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NOTICE

This report deals with a method of studying the equation of cylin-
drical waves particularly indicated- for the solution of certain problems
in aerodynamics. One of the most remarkable aspects of this method is
that it reduces problems of a hyperbolic equation to problems of harmonic
functions. We have applied ourselves here to setting up the fundamental
principles, to developing their investigation up to calculation of the
pressures on the visualized obstacles, and to showing how the initial
field of "conical flows" was considerably enlarged by a procedure of
integral superposition.

Such an undertaking entails certain dangers. In France the exist-
ence of conical flows was not known before 1946. Abroad, this question
has, for a long time, given rise to numerous reports which either were
not published or were published only after a certain delay. Thus it
must be pointed out that some of the results here obtained, original in
France when found, doubtlessly were not original abroad. Nevertheless
it seems possible to me to specify a certain number of points treated
in this report which, even considering the lapse of time, appear as new:
the parts concerning homogeneous flows, the general study of conical
flows with infinitesimal cone angles, the numerical or analogous methods
for the study of flows flattened in one direction, and a certain number
of the results of chapter IV. Moreover, even where the results which we
found independently were already known abroad, the employed methods are
not always identical.

Another peculiarity should be noted. BSince these questions actually
are everywhere the object of numerous investigations, progress has made
very rapid strides. This report edited at the beginning of 1948, risks
appearing, in certain aspects, slightly outmoded in 1949. To extenuate
this inconvenience we have indicated in a brief appendix placed at the
end of this report the progress made in these questions during the last
year. This appendix is followed by a supplementary bibliography which
indicates recent reports concerning our subject, or older ones of which
we had no previous knowledge.

I should not have been able to successfully terminate this report
without the advice and support of my teacher, Mr. J. Peres, and it is
very important to me to express here my great respect for and gratitude
to him.

I should equally cite all those who directly or less directly have
contributed to my intellectual development and to whom I owe so much:
my teachers of special mathematics and of normal school, Mr. Bouligand
who directed my first reports, Mr. Villat, promoter of the Study of the
Mechanics of Fluids in France whose brilliant instruction has been of
the greatest value to me.
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I also feel obliged to thank the directors of the 0.N.E.R.A. who
have facilitated my task, and especially Mr. Girerd, director of aero-
dynamic research.
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PREFACE

With his research on conical flows and their application, Mr. Paul
Germain has made a major contribution to the very timely study of super-
sonic aerodynamics. The present volume offers a comprehensive expose’
which had been still lacking, an expos€ of elegance and solid construc-
tion containing a number of original developments. The author has fur-
thermore considered very thoroughly the applications and has shown how
one may solve within the scope of linear theory, by combinations of
conical flows, the general problems of the supersonic wing, taking into
account dihedral and sweepback, and also fuselage and control surface
effects. The analysis he develops in this respect leads him to methods
which permit, either by calculation alone or with the support of
electrolytic-tank experimentation, complete and accurate numerical
determinations.

After a few preliminary developments (particularly on the validity
of the hypothesis of linearization), chapter I is devoted to the gener-
alities concerning conical flows. In such flows the velocity components
depend only on two variables and their determination makes use of har-
monic functions or of functions which verify the wave equation with two
variables according to whether one is inside or outside of the Mach
cone. Mr. Germain specifies the conditions of agreement between func-
tions defined in one domain or in the other and shows that the study of
conical flows amounts in general to boundary problems relative to three
analytical functions connected by differential relationships. He studies,
on the other hand, homogeneous flows which generalize the cone flows and
are no less useful in the applicstions.

From the viewpoint of the linear theory of supersonic flows one
must maintain two principal types of conical flows, bounded respectively
by an obstacle in the form of a cone with infinitesimal cone angle, and
by an obstacle in the form of a cone flattened in one direction.

The general investigation of the flows of the first type is entirely
Mr. Germain's own and forms the object of chapter II of his book. By a
subtle analysis of the approximations which may be legitimate Mr. Germain
succeeds in simplifying the rather complex boundary problem he had to
deal with; he replaces it by an external Hilbert problem. He shows how
it is possible, after having obtained the solution for an orientation
of the cone in the relative air stream, to pass, in a manner as simple
as it is elegant, to the calculation of the effect of a change in inci-
dence. He gives general formulas for the forces, treats completely
diverse noteworthy special cases and finally applies the method of trigo-
nometric operators which is also his own to the practical numerical
calculation of the flow about an arbitrary cone.

The determination of movements about infinitely flattened cones has
formed the object of numerous reports. The analysis which Mr. Germain
develops for this question (chapter III) contributes simplifications,
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specifications, and important supplements. Thus he evolves, in the case
of an obstacle inside the Mach cone, a principle of minimum singularity
which enters into the determination of the solution. Mr. Germain gives
two original methods for treatment of the general case: one utilizes
the electrolytic-tank analogy, surmounting the difficulty arising from
the experimental application of the principle of minimum singularity;
the other, purely numerical, involves the- trigonometric operators quoted
above.

In the last chapter, finally, Mr. Germain visualizes the composi-
tion of conical flows with regard to aerodynamic calculation of a super-
sonic aircraft. Concerning this subject he develops a complete theory
which covers most of the known results and incorporates new ones. He
concludes with an outline of the flows past a flat dihedral, with appli-
cation to the fins and control surfaces.

The creation of the National Office for Aeronautical Study and
Research has already made possible the setting up of groups of investi-
gators which do excellent work in several domains that are of interest
to modern aviation and put us on the level of the best research centers
abroad. Mr. Paul Germain inspirits and directs one of those groups in
the most efficient mammer. He is one of those, and the present report
will suffice to bear out this statement, on whom we can count for the
development of the study of aerodynamics in France.

Joseph Peres
Member of the Academy of Sciences
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NATIONAL ADVISORY COMMITTEE FOR AERONAUTICS

TECHNICAL MEMORANDUM 135k

- .~ . GENERAL THEORY OF CONICAL FLOWS AND ITS APPLICATION

TO SUPERSONIC AERODYNAMICS*

By Paul Germain

CHAPTER I - GENERALITIES ON CONICAL FLOWS

l.l - Equations of Supersonic Linearized Flows

1.1.1 - General Equation for the Velocity Potential

Let us visualize the permanent irrotational flow of a compressible
perfect fluid for which the pressure p and the density p are mutual
functions. The space in which the flow takes place will ve fixed by
three trirectangular axes O0Ox;, Oxp, Ox3, the coordinates of a fluid

molecule will be x3, Xo, X35 the projections on Ox; of the veloc-
ity V and of the acceleration A of a molecule will be denoted by

u; and a4, respectively.

The fundamental equations which permit determination of the flow
are the Euler equations

A =~ =grad p
o)
or
- .19 (1.1
al P axl )

the equation of continuityd

*"La théorie générale des mouvements coniques et ses applications
a 1'aérodynamique supersonique." Office National d'Etudes et de
Recherches Aéronautiques, no. 34, 1949.

lWe employ the classic convention of the silent index: ai-(pui)
X3

is to be read: (pul) + 2(puz) Bx3 (pu3)
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div oV = 0 o 0
v pV = or E(pui) = (1.2)

and the equation of compressibility

p = £(p)
If one notes that
ou;
— i
a; =y o= (1.3)
k
and introduces the sonic velocity2
2.
c 30 (T.4)

the equation (I.1l) assumes the form

Sui _ 13p _ _1dpdp _ _ 20
kS T P Papdx P ox; (1.5)

We introduce the velocity potential @(xl, X0, x3), defined with
the exception of one constant, by

.._)._é
V = grad ¢ uy = 0

2The velocity of sound, introduced here by the symbol & has a

dp
well-known physical significance; it is the velocity of propagation of
small disturbances. This significance frequently permits an intuitive
interpretation of certain results which we shall encounter later on
(see section 1.1.k4).
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which is legitimate since we shall assume the flow to be irrotational.
If we make the coembination

- : e - N T
1"k Quy  Ox; Oxy Oxy Oxy

one sees, taking into account equations (I.5) and (I.2), that

2 2
% 9 _ 9% _ .2 9% . (1.6)

This equation is the general equation for the velocity potential.
One may show, besides, that ¢ 1is a function of the velocity modulus;
thus one obtains an equation with partial derivatives of the second
order, linear with respect to the second derivatives, but not completely
linear.

The nonlinear character of the equation for the velocity potential
makes the rigorous investigation of compressible flows rather difficult,
at least in the three-dimensional case.

In order to be able to study, at least approximately, the behavior
of wings, fuselages, and other elements of aeronautical structures, at
velocities due to the compressibility, one has been led to introduce
simplifying hypothesis which permit "linearization" of the equation for
the velocity potential.

1.1.2 - The Hypotheses of Linearization and Their Consequences

For aerodynamic calculation, one may assume that the body around
which the flow occurs has a position fixed in spagce and that the fluid
at infinity upstream is moving with a velocity U, U being a constant
vector, the modulus of which will be taken as velocity unit. We shall
always assume that the axis Ox; has the same direction as Uj; the

hypotheses of linearization amount to assuming that.§§ every point of
the fluid the velocity is reasonably equivalent to U.

We put in a more precise manner

u, =1 + u

1 u2=v u3=w
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u, v, w are, according to definition, the components of the "pertur-
bation velocity."

(1) v, v, w are quantities which are very small referred to
unity; if one considers these quantities as infinitesimals of the first
order, one makes it at least permissible to neglect3 in the equations

8ll infinitesimals of the second order such as uz, vz, uv, ete.

(2) All partial derivatives of u, Vv, w with respect to the
coordinates are equally infinitesimals at least of the first order so

2
that one is Justified in neglecting terms such as u gg—, v , ete.
Xl sz

One may deduce from these hypotheses a few immediate consequences:

(a) At every point of the field, the angle of the velocity vector
with the axis Ox; 1is an infinitesimal of the first order at least.

Hence there results a condition imposed on the body about which the flow
is to be investigated; at every point the tangent plane must make a
small angle with the direction of the nondisturbed flow (this is what
one calls the uniform motion, defined by the velocity ).
If one designates by q the velocity modulus, one has, taking the
hypotheses setup into account
@2 = (1 +u)2 + v2 + w2 =1 + 2u

whence

ga=1+u

(b) The pressure p and the density p differ from the values Py
and P which these magnitudes assume at infinity upstream only by an

infinitesimal of the first order; the equation (I.5) is written in effect

3This signifies that u, v, w may very well not be infinitesimals
of the same order; in this case one takes as the principal infinitesimal
the perturbation velocity component which has the lowest order.




NACA ™ 1354 5

with ¢ denoting the sonic velocity at infinity upstream; thus

ezt . (¢4 1

u = - —(p - pl) (1.7)

On the other hand, according to equation (I.k)
- o 2 =
P -Pp =P - Py = -Pqu

If one defines the pressure coefficient Cp by

C_P'Pl
= _____:;75
0,/2| U]
one has
C,. = -2u (1.8)

b

(¢) Finally, an examination of what becomes of the equation for the
velocity potential (equation (I.6)) under these hypotheses shows that it
is reduced to

%o _ o 2 % , 3% , d%
1 Bxlz szz 8x32

Let w(xl,xz,x3) be the "disturbance potential," that is, the

potential the gradient of which is identical with the disturbance-
velocity vector; @(xl,xz,x3) is the solution of the equation with

partial derivatives of the second order

2
1 - 2 2
:1 el @2 - aa$2 + 9 92 (1.9)

a completely linear equation.
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The Mach number of the flow is called the dimensionless con-

S

stant M = LHJ which, with the velocity unit to be chosen arbitrarily,
c1

is written here M= 1/c;.

We put: e(M2 - l) = Bz, with € being equal +1 or -1 according to
whether M is larger or smaller than unity.

(1) If M <1, equation (I.9) is written

2 % % 3% _,

B
Bxlz szz 5x32

an equation which may be easily reduced to the Laplace equation.

This equation applies to flows called "subsonic" because the velocity
of the nondisturbed flow is smaller than the sonic velocity at infinity
upstream. These flows will not be investigated in the course of this

reportu.

(2) If M >1, equation (I.9) is thus written

g2 %0 _ 3%, %0 (1.10)

aXl

This equation applies to "supersonic" flows; if one interprets xq

as representing the time t, this equation is identical with the equa-
tion for cylindrical waves, well-known in mathematical physics. Investi-
gation of this equation will form the object of this report.

Remarks.

(1) It should be noted that, in order to write the preceding equa-
tion, it was not necessary to specify the form of the equation for the
state of the fluid. 1In particular, the formulas written above do not
introduce the value of the exponent 7y of the adiabatic relation p = kpy
which is the form usually assumed by the equation of compressibility.

lLInvestigation of linear subsonic flows has formed the object of
numerous reports. See references 1 and 2.
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(2) The preceding anaslysis shows clearly the very different char-
acter of subsonic flows which lead to an elliptic equation, and of
supersonic flows which are represented by a hyperbolic equation.

f=c = 3

(3) When we wrote equation (I.9), we supposed implicitly that

M2 - 1 was not infinitely small, that is, that the flow was not "tran-

sonic," according to the expression of Von KérmAn°®. Thus 1t is lmpossible

to make M tend toward unity in the results we shall obtain, In the
‘hope to acquire information on the transonic case6.

(4) It may happen, in agreement with the statement made in foot-
note 3, that u is an infinitesimal of an order higher than first. In
this case, one will take up again the analysis made in paragraph (b) of
section 1.1.2, which leads to a formula yielding the Cp, more adequate

than the formula (I.8)

Cp = -2u - V2 + w2) (1.11)

1.1.3 - Validity of the Hypotheses of Linearization

Any simplifying hypothesis leads necessarily to results different
from those which one would obtain with a rigorous method. Nevertheless,
it was shown in certain numerical investigations on profiles (two-
dimensional flows) where the rigorous method and the method of lineari-
zation were applied simultaneously that the approximation method provided
a very good approximation for the calculation of forces. Besides, it
is well-known that the classic Prandtl equation for the investigation of

5Study of the transonic flows, with simplifying hypotheses analogous
to those that have been made, requires a more compact analysis of the
phenomena. It leads to a nonlinear equation, described for the first
time by Oswatitsch and Wieghart (ref. 3). From it one may very easily
deduce interesting relations of similitude for the transonic flows
(ref. 4). One may find these relations also, in a very simple manner,
by utilizing the hodograph plane.

In a general manner, according to the values of M, one may be led
to neglect certain terms in the final formulas found for the pressure
coefficient CP' This requires an evaluation, in every particular case,

of the order of magnitude of the terms occurring in the formulas when M
J varies. In this report, we shall never enter into such a discussion.

i We shall limit ourselves voluntarily to the general formulas. An Iinter-
i esting example of such a discussion may be found in the recent memorandum
v of E. Laitone (ref. 5).
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wings of finite span in an incompressible fluid furnishes very acceptable
results, and the Prandtl equation results from a linearization of the
rigorous problem.

It happens frequently, we shall have occasion several times to point
it out, that the solution found for u, v, W will not satisfy the
hypotheses of section 1.1.2 in certain regions (for example in the neigh-
borhood of a leading edge); eventually certain ones among these magni-
tudes could even become infinite.

Under rigorous conditions such a solution should not be retained.
Anyhow, if the regions where the hypotheses of linearization are not
satisfied are "sufficiently small," it is permissible to assume that the
expressions found for the forces (obtained by integration of the pres-
sures) will still remain valid. This constitutes a justification
a posteriori for the linearization method so frequently utilized in

numerous aerodynamic problems7. Therefore, we shall not systematically
discard the solutions found which will not wholly satisfy the hypotheses
we set up.

1.1.4 - Limiting Conditions. Existence Theorem

Physically, the definition of sonic velocity leads to the rule
which has been called the "rule of forbidden signals" (see footnote 2
of section 1l.1.1) and which can be stated as follows:

A disturbance in a uniform supersonic flow, of the velocity U
produced at a point P, takes effect only inside of a half-cone of
revolution of the axis U and of the apex half-angle o = Arc s1n(l/M),
(B cot a) o is called the Mach angle, the half-cone in question 'Mach
after-cone at P.'

Correlatively, one may state that the condition of the fluid at a
point M (pressure, velocity, etc.) depends only on the character of
the disturbances produced in the nondisturbed flow at points situated
inside of the "Mach fore-cone at M;" the Mach fore-cone at a point is
obviously the symmetrical counterpart of the Mach after-cone with respect
to its apex.

If one wants to justify this rule from the mathematical viewpoint,
one must start out from the formulas solving the problem of Cauchy and
take into account the boundary conditions particular to the problem.
Along the obstacle one must write that the velocity is tangent to the
obstacle which gives the value d$/dn Moreover, at infinity

7For instance, in the investigation of vibratory motions of infin-
itely small amplitude about slender profiles.
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upstream (xl = —w) the first derivatives of ® must be zero, since ¢

is, from the aerodynamic viewpoint, only determined to within a constant,
it will be assumed zero.
The characteristic surfaces of the equation (I.10) are the Mach
cones. If one of the Mach cones of the point P cuts off a region (R)

on a surface (Z), the classic study of the problem of Cauchy8 shows
that the value of ® at P 1is a continuous linear function of the
values of ¢ and of d9/dn on R.

Let. us therefore consider a point M of a supersonic flow such
that its fore-cone does not intersect the obstacle. We take as the
surface % a plane x; = -A, with A being of arbitrary magnitude.

On £, ¢ and d%/dn, which are continuous functions, will be arbi-
trarily small. Consequently the value of ¢ at M 1is zero. Thus one
aspect of the rule of "forbidden signal" is justified.

Let us suppose that the forward-cone of M cuts off a region r(M)
on the obstacle; on r(M), d¢/dn is given by the boundary conditions;
thus ©(M) is a linear function of the values of @ on r(M).

One sees therefore that, if one makes M tend toward a point My

b of the obstacle, one will obtain a functional equation permitting the
determination of @ on the obstacle, at least in the case where the

existence and uniqueness of the solution will be insured9. Consequently,
®(M) depends only on the values of &$/dn in the region r(M); this

justifies the fundamental result of the rule of "forbidden signals."10

1.1.5 - General Methods for Investigation
of Linearized Supersonic Flows

In a regen§ articlell dealing with the study of linear supersonic
flows, Von Karman indicates that two major general procedures exist for

8For the problem of Cauchy, relative to the equation for cylindrical
waves, see for instance references 6 and 7.

9such a method has been utilized by G. Temple and H. A. Jahn, in
% their study of a partial differential equation with two variables (ref. 8).

105 more exact investigation of this question may be found in
appendix 1, at the end of this report.

llgee reference 4. A quick exposé of the methods in question may
also be found in the text, in reference 2.
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the study of these flows, one called "the source method,"” the other
"the acoustic analogy."

The first is an old method and its theoretical application is
fairly simple. It consists in placing on the outer surface of the
obstacle a continuous distribution of singularities, called sources,
the superposition of which gives at every point of the space the desired
potential; the local strength of the sources may, in general, easily be
determined with the alid of the boundary conditions. The second method
utilizes a fundamental solution of the equation (I.10), the composition
of which permits one to obtain the desired potential; this procedure is
interesting in that it permits utilization of the Fourier integrals and
thus furnishes, at least in certain particular cases, rather simple
expressions for the total energy.

Von Karman also indicates, at the end of his report, a thlrd general
procedure, that of conical flows.

We intend to Investigate in this report the conical flows and
the development of this third procedure which utilizes systematically
the composition of the "conical flows" and, more generally, of the flows
which we shall call "homogeneous flows of the order n." We shall see
that this procedure permits one to find very easily, and frequently
with less expenditure, a great number of the results previocusly obtained
by other methods, and to bring to a successful end the investigation of
certain problems which, to our knowledge, have not yet been solved.

1.2 - Generalities on Conical Flows

1.2.1 - History and Definition

Conical flows have been introduced by A. Busemann (ref. 9) who has
given the principal characteristics of these flows and has indicated
briefly in what ways they could be utilized in the investigation of
supersonic flows. Busemann gives as examples some results, frequently
without.proof. Several authors have supplemented the investigation of
Busemann: Stewart (ref. 10) has studied the case of the lifting wing A
to which we shall come back later on; L. Beschkine (ref. 11) has fur-
nished a certain number of results but generally without demonstration.
We thought it of interest to attempt a summary of the entire problem.

One calls "conical flows" (more precisely, "infinitesimal conical
flows")12 the flows in which there exists a point O such that along

12The adjective "infinitesimal" is remindful of the fact that the
flows have been "linearized;" we shall henceforward omit this qualifica-
tion since no confusion can arise in this report.
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every straight line issuing toward one side of O, the velocity vector
remains of the same value.

Let (n) be a plane not containing 0, normal to the vector Tﬂ
let us suppose only that the velocity vector at every point of (=n) is
not normasl to (xn); the projection of these velocity vectors on (x)
determines a field of vectors, the lines of force of which we shall
call (7): the cones (o) of vertex O and directrix (y) are "stream
cones" for the flow.

More generally, let (S) be a stream surface of the flow, passing
through O0; every surface deduced from (S) by homothety of the center O
and of k, k being an arbitrary positive number, is a stream surface.
(8) is not necessarily a conical surface of apex O, but having (8)
given as an obstatle does not permit one to foresee the existence of
such a flow. It is different if a conical obstacle of apex O 1s given;
the designation "conical flow" is thus justified.

Conversely, let us consider a cone of the apex O, situated entirely
in the region x; >0, and suppose that a linearized supersonic flow

exists around this cone; this flow is necessarily a conical flow such
as has just been defined; in faet, if V(xl,xz,x3) denotes this velocity

—
field, V(Xxl,sz,XXj) (A being any arbitrary positive number) is
equally a velocity field satisfying all conditions of the problem; con-

sequently, if the uniqueness of the desired flow is_admitted, must
be constant along every half-straight line from O 15,
Let us also point out that according to equations (I.8) or (1.11),
the surfaces of equal pressure are also cones of the apex O.
1.2.2 - Partial Differential Equations Satisfied
by the Velocity Components

According to definition, the velocity components of a conical flow
depend only on two variables; on the other hand, as functions of X,

131t should be noted that this argument will no longer be valid
without restriction in the case of a real supersonic flow around a cone
because in this case the principle of "forbidden signals" is no longer
valid in the rigorous form stated. Among other possibilities, a detached
shock wave may form upstream from the cone behind which the motion is
no longer irrotational.
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Xps X3, they are naturally the solution of the equation

g2 22 _ P . Pf

Let us first put
Xp = T cos 6 X3 =T sin 6
the equation then assumes the form
2 2 2
Bxlz dr2 r2 3e2 T oOr

The second term of equation (I.12) is actually nothing else but
the Laplacian of f(xl’XZ’x3) in the plane Xo s x3 (Xl being con-

sidered as parameter); naturally f(xl,r,e) is periodic in 6, the

period being equal to 2x.

To make the conical character of the flow evident, let us put

x, = Brx (1.13)

X is a new variable; X < 1 characterizes the exterior of the Mach
cone with the apex 0, X > 1 characterizes the interior of the cone.
Under these conditions, the disturbance-velocity components are func-
tions only of X and 6. Since f 1s a function of X and 6 only

2 2 2
a2 = 9L ax2 + 29°f_ ax a0 + 9L 3¢® + O£ a2x + 9L a2
NE: 3% 96 392 X 36

but

ax = Bl—r(dxl - BX dr)

d2x=L(d2xl-BXdzr-z——drdX1+zBldr2)
Br r r
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2 2 2
Qf s 9 f, ) f, of are the respective coefficients of dxlz, drz,
dx,2 2 g2 Or

-aez, d2r~rin the expression of d%f as a function of the vari-

ables X15 T, 6.

As a consequence, the equation (I.lz) becomes under these conditions

2 2
(Xz_l)ﬂ.+a_i+xa—f=0 (I.1%4)
axz 362 BX

One may try to simplify this equation furtlier by replacing the
varisble X by the variable &, X and & being connected by a rela-
tionship X = X(t), and by making a judicious choice for the func-
tion X(&). The first operation gives

b@ - 1)§E£ + x'2 Qii + %%[%X' - ﬁzg—iTlZXL%] =0

Jt2 d62

with the primes denoting derivatives with respect to £&. For simplifying

of

this equation, one may make the term in SE disappear. This will be

realized by putting
(1) I£ x>1,
X =ch ¢ (1.15)

one obtains for f Laplace's equation

2
ofr 4 3% _ g (1:16)
JE2 2
(2) If x <1,
X = cos 1 (1.17)

in this case, one obtains the equation for waves with two variables

Pr _ e 0 (1.18)
M2 62
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Geometrical interpretation.- X > 1 corresponds to the interior of
the Mach rearward cone (I') of the point O0; every semi-infinite line,
issuing from O, inside of this cone, has as image a point 6, E. One
will assume, for instance, -n < 8L w; & =0 corresponds to the
cone (I'), & =» corresponds to the cone axis (it will always be pos-
sible to assume £ as positive). The image of the interior of (I')
forms therefore on the region (A) of the plane (6,t) (fig. 1), limited
by the semi-infinite lines AT, A'T' and by the segment AA'. The
correspondence is double valued in the sense that to a semi-infinite
line issuing from O there corresponds one point and one only (6,t)
in the bounded region and conversely, to one point of this region there
corresponds one semi-infinite line, and one only, issuing from O,
inside of (I').

Since we shall suppose, in general, that the cone investigated is
entirely in the region x; > O, only this region will be of interest

(¢ then being identically zero for x]p < 0). The semi-infinite lines
of this region issuing from O, outside of (F), correspond to 0 <X <1

(fig. 2), that is, according to equation (I.17), O <7 < g; 1 =0

LS

corresponds to the cone (F), n = > to the plane x5 = O; the semi-

infinite lines issuing from O correspond biunivocally to the points
of the region (A'), inside of the rectangle AA'B'B in the plane (6,7).

Summing up, the velocity components satisfy the simple equa-
tions (I.16) and (I1.18), the first of which is relative to the region (A),
the second to the region (A').

1.2.3 - Fundamental Theorem

The equation (I.14) which represents the fundamental equation of
our problem is an equation of mixed type; it is elliptic or hyperbolic
according to whether X 1is larger or smaller than unity. In order to
study this equation in a simpler manner, we have been led to divide the
domain of the variables into two parts and to represent them on two
different planes. How an agreement will be reached between the solutions
obtained for f in the two planes - that is the question which will be
completely elucidated by the following theorem which will be fundamental
in the course of our investigation.

Theorem: There exists "agreement” as to X = 1 for all derivatives of

f, defined in either the region (A) or (A'), provided that there is

"asgreement' for the function itself.
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In fact, let us take two functions fl(G,E), fz(e,n), the first

satisfying the equation (I.16) in the region (A), the second the equa-
tion (I.18) in the region (A'), both assuming the same values ©(6) on
the respective segments (£ =0, -t <6 <=n) (1 =0, -1t <6 <n). Let

n

of
8y be the abcissa of a point of AA'. If nl(eo,o) exists,
o0

3y 3 3ty
————(90,0) = =ZL: consequently (60,0) exists and
Je™ aet Je™

ey e,
o (89s0) = Soh (89,0)

Let us now pass to the investigation of the derivatives of the

order n of the form ——éEi——: the equation (I.14) shows first that
et

g1y = - P 1
2t(o,) - - Leo,0)

which proves that all partial derivatives of the order 1 with respect
to X have the same value on (I), whether they are calculated starting
from f7 or from f,. The argument develops without difficulty through

recurrence. By deriving equation (I.14) n times with respect to X
and making X = 1, one obtains

(2n + 1)an+lf + n? onf on+er

Y ke 1 dePnd

an+p £

62X
as a function of the derivatives of ®(6) with respect to 6 and that
they, consequently, have the same value, whether calculated starting
from fl or from fz.

which finally shows that the values can be uniquely expressed

- Summing up, one may say that it is sufficient for the establishment
of the "agreement" between two solutions defined in (A) and (A'), if
these solutions assume the same value on the segment AA'.
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1.2.4% - Mode of Dependence of the Semi-Infinite
Lines Issuing From O

If one puts in the plane (6,7)
6 + 1 =2\ 6 -1 =2u (1.19)

one sees that the characteristics of the equation (I.18) are the parallels

to the bisectrices A = c'®, p = c®, These characteristics are, in

the plane (n,8), the images of the planes

x] ='fr cos(2r - 6) and x; = pr cos(6 - 2u)

which are the planes tangent to the cone (I'). The characteristics
passing through a point So(eo,no) are the images of two planes tangent

to the cone (I') which one may lay through the semi-infinite by cor-
responding to the point 8y of the plane (6,1) (fig. 3). The gener-
atrices of contact are characterized on the cone by the values 91

and 6, of the angle 6. One encounters here a result which seems to

contradict indications of section 1.1.4. This apperent contradiction
is immediately explained if one notes that, since all points of a semi-
infinite Ay issued from O are equivalent, one must consider at the

same time all Mach cones, the apexes of which are situated on Agy; the

group of these cones admits as envelope precisely the two planes tangent
to the cone (I') passing through Ag. We shall call "Mach dihedron

posterior" to the sem-infinite /4 that one of the dihedra formed by

the two planes which contains the group of the Mach cones to the rear of
the points of Ap. The region inside ot this dihedron and outside of

the cone (I') has as image in the plane (G,n) the triangle 67 8p95.
A semi-infinite A; will be said to be dependent on or independent of
&g according to whether the image of Ay will be inside or outside of
the triangle 69 Bpbp. This argument also explains why the equa-

tion (I.1l4) shows elliptic character inside of (I'). More precisely,
two semi-infinite lines Ay and Ay, inside of (r), are in a state of

neutral dependence (ref. 9). In fact, let Ml be a point of A, MZ

a point of A,; let us suppose that M; 1is outside of the Mach forward
cone of M,; according to the argument of section 1.1l.4 the point Mo
seems to be independent of M;; but on the other hand, if one assumes My’
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to be a point of Ay, inside of the Mach forward cone of M,, My’
and M; are equivalent which explains that M, is actually not inde-
pendent of M; (fig. 4).

1.2.5 - The Conditions of Compatibility

Thus one may foresee how the solution of a problem of conical flow
will unfold itself. One will attempt to solve this problem in the
region (A') which will generally be fairly easy since the general solu-
tion of the equation (I.18) is written immediately by adjoining an arbi-
trary function of the variable 6 + 1 to an arbitrary function of the
variable 6 - 1. This will have the effect of "transporting" onto the
segment AA' +the boundary conditions relative to the region (A').
Applying the fundamental theorem, one will be led to a problem of har-
monic functions in the region (A). But taking as unknown functions the
components u, v, w, of the disturbance velocity, we have introduced
three unknown functions (while there was only one when we dealt with
the function ®). One must therefore write certain relationships of
compatibility which express finally that the motion is indeed irrotational.

The motion will be irrotational if u dxl + v dxz + W dx3 is an

exact differential which will be the case when, and only when

x) du + x, v + X3 dw = r(BX du + cos 6 dv + sin 6 aw)

is an exact differential. This can occur only if this expression

is identieally zero, with u, v, w Dbeing functions uniquely of 8
and of X (the total differential not containing a term in dr must
be independent of 1r):

In a conical flow the potential is written

P = ux) + vxp + wxgy = r(pux + v cos 6 + w sin 9)

with u, v, w Dbeing the disturbance-velocity components.
One will note that ¢ is proportional to r.

Moreover

Bx du + cos 6 dv + sin 6 dw = O (1.20)
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This 1is the relationship which is to be written, and this is the

point in question, on one hand in the plane

(6,8).

(a) Relations in the plane

plane

(6,1).

(6,1), on the other in the

One may write

w=wm () + up(h)

and analogous formulas for v and w,
relations (I.19).

an o 086

A and
One has in particular

1t being defined by the

Besides, according to equation (I.20)

g cos m dup + cos 6 dvy + sin 6 dwy

B cos n du, + cos 6 dvy + sin 6 dws

however:
tion (I.21) is written

n
(@)

(1.21)

I
o

6 =r+u, 1 =N~ H; and consequently the first equa-

cos u[% cos A dul + cos A dvl + sin A dwi] +

sin u[% sin A du:L - sin A dv, + cos A dwi] =0

since the two quantities between brackets are unique functions of A,

the preceding equality causes
B cos A duj + cos A dvy
B sin A duj - sin A dvy

or

av 1

sin A dw1 =0
cos A dwl =0
dWl

-8 du, =
P 1 cos 2A

I.22
sin 2A ( )
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In the same manner one will show that

(1.23)

- PR - d_u = =
B 2 cos 21 sin 2p

(b) Relations in the plane (6,t).

The calculation is perfectly analogous. The equation (I.16) causes
us to introduce the complex variable § = 6 + i€ and the func-
tions U(¢), V(¢), W(t), defined with the exception of an imaginary
additive constant, the real parts of which in (A) are, respectively,
identical to u(6,&), v(6,t), w(e,t).

The equation'(I.20) permits one to write

Bch £EdU + cos 8 AV + sin 6 dW = O

If one puts
6 + it = ¢ 6 - it =€
one obtains
cos g B cos £ dU + cos Q dv + sin £ aw ! +
2 2 z 2

— —_

sin £ B sin £ dU - sin £ dv + cos g dWw| = 0
2 2 2 2

thence one concludes as previously

_av__ _ _aw .
-p av cos § sin ¢ (1.24)

The formulas (I.22), (I.23), (I.24) express the relationships of
compatibility which we had in mind.
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Remark.

We shall utilize frequently the conformal representation for studying
the problems relative to the domain (A). If one puts, in particular

Z = eiC = e—§e19

one sees that (A) becomes in the plane 2Z the interior area of the

circle (Cp) with the center O 1k and the radius 1 (fig. 5).

If one puts Z = pele, the point Z 1is the image of a semi-infinite
line, issuing from the origin of the space (xl,xz,x3), characterized

by the angle 6 and the relationship

2
_=X=l_+__p_.
Br 2p

The origin of the plane Z corresponds to the axis of the cone (I'),
the circle (Cg) to the cone (r') itself. A problem of conical flow

appears in a more intuitive manner in the plane Z +than in the plane €.
In the plane Z, the formulas (I.24) are written

R dU = 228V _ o5y _ AW (1.25)
2 2
z° + 1 zc -1

We shall moreover utilize the plane 2z defined by

27
72 + 1

Z =

The domain (A) corresponds conformably to the plane 2z notched by
the semi-infinite lines Ax, A'x' (fig. 6), the cone (I') at the edges
of the cuts thus determined, and the axis of the cone (I') at the origin

1k

No confusion is possible between the point O, origin of the sys-
tem of axes xj, Xp, X3 and the point O, here introduced as the

origin of the plane 2.



! NACA TM 1354 21

of the plane z. The relations of compatibility in the plane 2z then
assume the form

BdU =12 av = - 12 dW (1.26)
ql - z2
1.2.6 - Boundary Conditions
The Two Main Types of Conical Flows

The boundary conditions are obtained by writing that the velocity
vector is tangent to the cone obstacle. Let, for instance, xz(t), x3(t)

be a parametric representation of the section x; = p of the cone;
x3x2‘ - x2x3', Bx3', -BXo' constitute a system of direction parameters
of the normal to the cone obstacle, and the boundary condition reads

WX2' - VX3' =

W |-

6x3x2' - x2x3) (L + u) (r.27)

) It will be possible to simplify this condition according to the
cases. However, the simplification will have to be treated in a dif-
ferent manner according to the conical flows investigated. As set forth
in section 1.1.2, two main types of conical flows may exist.

(1) The flow about cones with infinitesimal cone angles, that is,
cones where every generatrix forms with the vector ‘I? an angle which
remains small. Naturally, the cone section may, under these conditiomns,

‘ be of any arbitrary form; since the flow outside of (r) is undisturbed
(velocity equivalent to U), on the cone (') u, v, w are zero.

- The problem may have to be treated in the plane Z; U(Z), V(zZ),
W(Z) will have real parts of zero on (CO). The image (C) of the

obstacle, in the plane 2, is defined by a relation p = £(6); conse-
quently, a parametric representation of the section x; = f will be

s s

obtained by means of the formulas

24 _Eie

Xo = ——EE—— cos O x3 =-—Jﬁi—— sin ©

1l + p2 1+ p2

.\g_ﬂw;.
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Thus the condition (I.27) becomes

wlé sin 6 - p' cos @ + pz(p sin 8 + p' cos 6@] +

2
v[E cos 6 + p' sin 0 + p?(p cos 6 - p' sin éz] = g%—(l +u) (1.28)

with ©6 taken as parameter, and p' denoting the derivative of o
with respect to 6. The investigation of conical flows with infinitesimal
cone angles will form the obJject of chapter II.

(2) The flow about flattened cones, that is, cones, the generatrices
of which deviate only little from a plane containing U. Let us remember
that (section 1.1.2) the tangent plane is to form a small angle with H
consequently, rigorously speaking, the section of such a cone cannot be a
regular closed curve, an ellipse for instance; it must present a lentic-
ular profile (fig. 7). 1In chapter III we shall study the flows about

such cones.

Remark.

Actually, we have, therewith, not exhausted all types of conical
flows, that is, those for which linearization is legitimate. One may,
for instance, obtain flows about cones, the section of which presents
the form shown in figure 8; the axis of such a cone has infinitely small

inclination toward .
Before beginning the study of these flows we shall, in order to

terminate these generalities, introduce a generalization of the flows,
the possible utilization of which we shall see in a final chapter.

1.3 - Homogeneous Flows

1.3.1 - Definition and Properties

The conical flows are flows for which the velocity potential is of
the form

Q = rf£(6,x)
as we had seen in section 1.2.5. One may visualize flows for which

¢ = r'f(e,x)
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We shall call them homogeneous flows of the nth order®. The conical
flows defined in section 1.2 are, therefore, homogeneous flows of the
order I. However, we shall maintain the expression "conical flow" to
designate these flows since this term has been used by numerous authors
and glves a good picture.

The derivatives of the velocity potential with respect to the wvari-
ables X1, Xp, X3 all satisfy the equation (I.10). If one then con-

siders the derivatives of the nth order of the potential of an homogeneous
flow of the nth order, one finds that they depend only on X and 6

and satisfy the equation (I.14); the analysis made in section 1.2.2
remains entirely valid. One may make the changes in variables (I.15)

and (I.17) which lead to the equations (I.16) and (I.18). Thus one has
here a method sufficiently general to obtain solutions of the equa-

tion (I.10) which may prove useful.

The simplest flows are the homogeneous flows of the order O which
do not give rise to any particular condition of compatibility. For the
flows of nth order, in contrast, one has to write a certain number of

conditions connecting the derivatives of nth order. We shall exa.mine16
as an example the case of homogenecus flows of 2nd order.

There are six second derivatives which we shall denote @ij (i

and j may assume independently the values 1, 2, 3), @ designating

ij

2
0" . outside of (I') we shall put
ox4 ij

o 2
Pig = %15 * Py

with @ijl being a function of A only, @ijz of u only (see for-

mila I.19). Inside of (I'), ®ij is the real part .of a function @ij(C).

In order to obtain the desired relations, it is sufficient to note
that

15Me definition for homogeneous flows of the nth order has been
given for the first time by L. Beshkine (ref. 11); this author, by the
way, calls them conical flows of the nth order. One may also connect
this question with the article of Hayes (ref. 12).

16See appendix 2.
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dx: = dCPi

Pig 9%;5

and to apply the results of section 1.2.5; thus one may write the fol-

lowing six relations between the wijl

1 1 1 1 1 .
-B 4P, = ——= 39, = —=_ 349, i=1,2
B dPiy cos 2n 12 sin 20 13 ( »2,3)

which, besides, are reduced to five as one sees immediately. One will
have analogous relations for the functions ¢ij2 (it is sufficient to

exchange the role of A and of ).

Finally, one has for the analytic functions @ij(C)

1 1
- 4., = ad,., = dd,
B doqy cos { 12 sin £ 13

namely six relations which as before are reduced to five. The written
conditions are not only necessary but also sufficient since the func-

tions @i necessarily are the components of a gradient. Thus one sees

that there is no difficulty in writing the conditions of compatibility
for a homogeneous flow of nth order.
1.3.2 - Relations Between the Homogeneous Flows
of nth and of (n-1)th Order
We shall establish a theorem which can be useful in certain prob-
lems and which specifies the relations existing between homogeneous

flows of nth and of (n-1)th order; we shall examine the case where n = 1.

1.3.2.1.- Let us consider inside of the cone (I') a homogeneous
flow of the order O defined by

o - 5]
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We shall first of all seek the components u, v, w of the dis-

turbance velocity
@ = u dxy + v dxp + w dx =RED‘(Z) az| = rlze'(z) &2
37 = = 2

then

dz _ 9P , 5 ge

Xo =T cos 6 X3 =7 sin 6

thus

dp _ pZ +1 dxl ) Xy dx2 + x3 dx3
P DZ -1 Xl r2

- Xz dX3 - X3 dXz

2

de

r
whence one deduces

2
w=P *1 1 5[%¢'(Z§]
pz -1%

2 .
vy = _cos6p” +1 B[%Q'(ZE] 4 81D @ ¢ Z@'(ZE]
pe -1 r

we .58in6p2 +1 B[zqr(zﬂ - %ﬁz[’m'(Zﬂ

r pz_l
however
2 2
Z + i = P2+ 1 cos @ + 1 E—-i—i sin 6
Z p
2 _ 2 _
Z - i =P 1 cos 6 + 1 e 1 sin 6
Z p
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hence the result

(1.29)

Y
n
|l—‘
2o
oo
+
Dy
—
0 oo
N
N
o
+
N
©
~
n
L=
A

2 P
W = _J-_&Biﬁ(zz - ]_)@l(z)jl
X pz -1 | 2

- . t — — —
1.3.2.2.- Let us now consider a point O (xl = 6, X5 = 0, X3 = O),
€1 being a very small quantity. Let M be a point with the coordi-
nates (xl,r,e) with respect to O, inside of (I'), and with the para-

meters (p,0) in the plane Z. For the conical flow (homogeneous of
lst order) with the vertex O', its coordinates are: (x7 - €1, r, 8) and
its parameters in the Z-plane:

2 €
pl_‘_’__f__];_l,g
02 -1 %X

since
2 - 2 .
d_x=-€=[3r9—-—ldp=x pe - 1 dp
1 1 > 175 o
2p P + 1

Let us then consider two identical conical fields but with the
apexes 0 and O0', and form their difference. We shall obtain a
velocity field which, due to the linear character of the equation (I.10),
will satisfy this equation. If

ug = B[F(Z):l

denotes the component u of the field with the vertex O, one has as
component u in the "difference field"

u=+_IiET‘(Zi| -_R_F(Z-E—i—L]liL-Z> _ o° fl a [ZF (Z:l (1.30)

-1* 02
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€1 being considered as infinitely small. Moreover, according to the
relations (I.25), the components v and w are written

€ 2 [~ =
S N L +lB_-ﬁ-(Zz+l)F'(Z)
X1 p2 .17 L 2 _
¢ (1.31)
€. 2 B
w=-—lp——+—]2§iﬁ(zz-l)F'(Z)
X1 p2 .17 | 2 _
J

1.3.2.3.- Let us consider the point O"(O,GZ,O), with €5 being
a small quantity.” Let M be a point with the coordinates (xl,r,O)

with respect to O, inside of (I'), with the parameters (p,8) in the

plane Z. For the flow with apex O0'', the coordinates of M are

EEE;Q) as can be easily stated by projecting
r

M in m on the plane XpX3 (fig. 9). But on the other hand

(xl, r - 62 cos 06, 6 + €2

2x 2
dr = —+ 1P dp = ~€5 cos 6

"2+ e?)

2%
rag=—=—L 30 =c¢,sin0
P 1+ p2
thus
i0 1+ p? 1+ 02| 16
dzZ = e Eép + ip d%] = €5 ———— B|1 sin 6 - cos 68 ————|e

with 2Z + dZ representing the point M in the conical field with the
vertex O''.

Let us then consider two identical conical flows, but with the
apexes 0O and O'', and form their difference. We shall obtain a
velocity field which due to the linear character of the equation (I.10)
will satisfy this equation. If

vo = R[a(2)]
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denotes the component v in the field of the vertex O, one has a com-
ponent v in the "difference field"

<
Il

+B[G(Z)] - g[G(z + dZﬂ = -R[G'(Z)dZ]

c.p .2 [ .
= - S2B 0% + 1 glgi(2)]cos (1 + %) + 1 sin o (o - 1)]e19
le p2 -1 -

=-___ZBP—-—2+1RZG'(Z)Z+_1_)
2X7 A2 _ - Z

€, 2
-2 __‘32 + 1.5[_ ‘2-(22 + 1)G'(Z)
et -1 . (1.32)

]

besides, according to equation (I.25), the components u and w are
written

€5 4O B
w=-20"*+1 R ZG'(Zi]

X p2 .1 -
‘ (1.33)

2 P
we=_2p2*tlp LE(ZZ - ]_)G'(Z)
Xy p2 -1 "_2

P

1.3.2.&.- With these three lemmas established, it is easy to demon-
strate the property we have in mind. Let us call "complex potential" of
a homogeneous flow of zero order the function &(Z) (section 1.3.2.1)

so that
o s

so that the function of complex variable, the real part of which gives
inside pf (I') the projection of the disturbance velocity in the direc—_,
tion 1, is the "complex velocity" of a conical field in the direction 1}
so that, finally, the velocity field obtained by the difference of two iden-
tical conical fields, the vertices of which are infinitely close and

ranged on a line parallq;;to 1, is the "field derived from a conical

flow" in the direction 1; then we may state:



S
& i

o

:1@05

S Aoy |

g

.

<@

NACA T™M 1354 29

—)
Theorem: The field derived from a conical flow in the direction 1 is

-

the velocity field of a homogeneous flow of zero order; the complex

potential of that flow of zero order is proportional to the complex

—>
velocity of the conical field given in the direction 1, since the pro-

portionality factor is real.

The proof follows immediately. According to sections 1.1.2

and 1.1.3, one may be satisfied with considering, for definition of a
homogeneous flow, the inside of the cone (I'); comparison of the for-
mulas (I.29), (I.30), (I 31), (1.32), (I.33) entails the validity of
the above theorem’ 1f Z is parallel or orthogonal to U. Hence the
general case where Z is arbitrary may be deduced immediately; if
F(z), G(z), H(Z) are the complex velocities in projection on Oxq,
0x5, Ox3, the_igpression for the component u of the field derived in

the direction 1(61,62,63) is

2
u = ;l_ pz_*lg Z[ElF'(Z) + 6,6 (Z) + €3H'(Z):|
1 p° -1

Thus, with lF(Z) + €5G(2) + €3H(Z) being the complex velocity in
projection on Z, comparison of this formula with the first formula (I.29)
completely demonstrates the theorem.

—_
1

Corollary: The field derived in the direction of a conical flow,

—
the complex velocity of which in the direction 1 is K(Z), is a

velocity field of a homogeneous flow dependent only on K(Z) (not on

_)
the direction 1).

The theorem Jjust demonstrated may be extended without difficulty
to the homogeneous flows of nth and (n-1)th order. A statement of this
general theorem would require only specification of a few definitions;
however, since we shall not have to utilize it later on, we shall not
formulate this statement.




30 NACA T™ 1354

CHAPTER II - CONICAL FLOWS WITH INFINITESIMAL CONE ANGLES*

2.) - Solution of the Problem

2.1.1 - Generalities

We shall now treat the first problem set up in section 1.2.6. Ve
shall operate in the plane Z. Iet us recall that the image of the
cone (I') 1is the circle (Cp) of radius unity centered at the origin,

and that the image of the obstacle is a curve (C), defined by its polar
equation p(6). We shall denote by (D) the annular domain comprised
between (C) and (Cy); we shall call (yg) the circle of smallest

radius centered at the origin and containing (A) in its interior, and
we shall call k the radius of the circle (yg). In this entire

chapter, k will be considered as the principal infinitesimal.
The problem then consists in finding three functions U(2), V(Z),

W(Z) defined inside of (D) except for an additive imaginary constant,
so that

(1) )
-pdU = —2% gy = 212 4y (1.25)
72 + 1 z2 -1

(2) the real parts u, v, w, which are uniform become zero on (Co),
(3) on (C), one has the relation

v[é cos 6 + p' sin 6 + p2(p cos 6 - p' sin Gﬂ +

2
w[é sin 6 - p' cos 6 + p%(p sin 6 + p' cos 9:] = E%—(l + u)

Put in this manner, the problem is obviously very hard to solve in
its whole generality; however, an analysis of the permissible approxima-
tions will simplify it considerably.

2.1.2 - Investigation of the Functions U(Z), V(z), W(Z)

2.1.2.1.~- An analytical function of 2 will be the said func-
tion (A) if its real part becomes zero on (Cg). Let us designate by

NACA editor's note: Some minor inconsistencies appear in the numbering
of equations in this chapter and subsequently in chapters III and IV, but no
attempt was made to change the numbering as given in the original text.
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(70') the circle with the radius l/k, centered at the origin, and by
(D') the annulus limited by (70) and (79') (fig. 10).

Lemma I.- A uniform function (A), defined inside the annulus

limited by (7 and (C may be continued over the entire domain (D').
0 0

This results immediately from Schwartz' principle. Let M and M
be two symmetrical points with respect to (CO), M Dbeing inside of

(CO); 6ne defines the function (A) at the point (M') as having,

respectively, an opposite real and an equal imaginary part compared to
the real and the imaginary part of the function given at the point M.

Lemma IT.- A holomorphic function (A) inside of (D') has a

Laurent development of the formtT

i + Z?t <§% - E;ZA)

1

Let H(Z) = h + ih' be such a function (A). Let us write its
Laurent development in (D') provisorily in the form

o0

H(Z) = O.Zann + Z EKnH
o T

It is an immediate demonstration and yields the formulas defining J,

and Kn

21
K2 1t in6
= 2= +
K, 5 (h + ih )7 e de

17We remember that Eh denotes the conjugate imaginary of Kj.
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(h + ih')70 denoting the value of H on (70); likewise

2n

kI I -iné
J. = (h + inh )7O:e ae

n
on 0

Consequently, according to the lemma I:

moreoQver

2n

27
1 dz 1 PR i
T = L H(z) 42 - 1. h + ih d6 = i h. ' de
0~ 2ix ¢ (z) z Zﬁk/; ( )CO 2 J g €o

is purely imaginary, and the lemma II is therewith demonstrated.

We shall note that, if H(Z) is limited by M on (70) or (70'),
one has the inequality

Ky | < pcn (1I.1)

Lemma III.- A function (A) with a real and uniform part defined

in (D) can be developed inside of (D') in the form

B log Z + ip + ;;i'<§% - E52P> (11.2)

{ Z

with B being real.

Actually, the derivative of the function (A) is necessarily uni-
form. Thus one knows (see for instance ref. 13) that one may consider
the given function as the sum of a uniform function H(Z) and a loga-
rithmic term; since the critical point of the logarithm is arbitrary
inside of (70), it is particularly indicated to choose this point at

the origin; since the real part of the function is uniform, the coeffi-
cient of log Z is real. Besildes, since log Z has a real part zero
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on (Co)’ H(Z) is itself a function (A). The given function may
therefore be continued inside of (D') and the development (11.2) is
thus justified.

Remark.

If one chooses as pole of the logarithmic term a point inside of
(70) but different from the origin, one obtains a development of the

form

— o Krll —_
B'log_z'aa"l+i[3+§ L _ grigh
aZ - 11 -a zi

1

2.1.2.2.- The functions U, V, W of the variable Z are all
three functions (A) with a real uniform part and, consequently, can
be developed in the form (II.2). We shall write henceforward

(e o]
J —
- B - ‘ E n n
2U(z) A log Z + ia + ( an>

1 zn

v(Z) = B log Z + ip +Z (z&n - Enzn> } (11.3)
1

W(Z) = C log Z - iy + > (IZ“—E - i'nzn>
1

A, B, C arereal, a, B, 7 are real and also arbitrary; but these
developments are not independent since the relations (I.25) must be

taken into account. For instance, Z dV/dZ must be divisible by 22 + 1;
otherwise we would have for U logarithmic singularities on the cone (')
which is inadmissible. Now

z%=3-zn<§n—n+fnzn>
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Hence one deduces the relations

=i( - l)PZP[Kgp + KZI;I

0= g( - 1)P(2P + 1) [sz+1 = —KZp+l_—]

o

r (11.4)

obtained by putting in the preceding equality Z =1 and Z = -i.

Likewise, 2 dW/dZ must be divisible by 72 -1 which gives

Z sz + sz)

? (11.5)

Z 2p + 1) L2p+l + L2p+l)
0

Finally, the equalities (I.25) lead, in addition, to relationships
connecting the coefficients of the developments (II.3) among themselves;
thus one may write the relations

B + 2Ky = -1[0 - 2Lz] K -K = —il:fl + L]:I (11.6)

nk, - (n - 2)K, 5 = il:(n - 2L, + nI,I;l (n >2)
and on the other hand

B = -(31 + Jl)

Ky = -A + 2, f (11.7)

nk, = (n-1)J, 7 + (n+ l)Jn+lJ (n >2)
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e

2.1.2.3. Approximations for the developments (II.3).- Moreover,
the hypotheses of linearization must be taken into account which, as we
shall see, will permit us to simplify the developments (II.3) consider-
ably and will lead us in a very simple manner to the solution of the
problem posed in section 2.1.1.

The equalities (II.6) make V(Z) and W(Z) seem of the same
order. We shall denote by M an upper limit of their modulus on the
circle (70). M will be equally an upper limit of their modulus on

(70') and hence in the entire domain (D').

If one utilizes the inequality (II.1), (II.4) shows thatl8
B = oftn?) K - K = o(Mx?)

If one assumes a, B, 7 2zero in what follows, which does not at
all impair the generality, one may write the second formula (11.3) in

the form

o0

v(z) - B(Kl)(-lz- - z) - zz: EKnﬁ = B log Z - 2'ann + 12(1(1)(% + z)

and consequently:

In the annulus limited by (70) and (Co), the second term of this
equality is

o(Mx210g )
Likewise according to equation (II.5)

¢ = ofMx?) Ly + T = o)

w(z) - ig(Ll)(% + z) - Z I;—E = C log Z + B(Ll)(% - z) - 2 T, zn

180 denotes Landau's symbol, A = O(Mkz) signifies that —AE- is
Mk

limited when %k +tends toward zero.
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In the annulus comprised between (7O> and (CO), the second term

of this equality is also
o(Mx?10g k)
Furthermore, according to equation (II.6)
Kn-g + 1Ly p = O(Mx") (n > 2)
Thus

w(z) - iv(z) = O(Mkzlog k) + 21K Z

in the annulus (70,00).

Finally, according to equation (II.T)

A = -k + 0fasd) Tp = BEL Ky + o(Mx™2)

Thus

- Jin(z) = -B_(Kl>log zZ - zﬁzz + ;nn;l .KleT’fl + o(Mk3log k)

Summing up: If one is satisfied with defining V(Z) and W(Z) except

for O(Mkzlog k) and U(Z) except for O(Mk3log k), one may write in
the coronsa (70,00)

w(z) = iv(2) + 2iKy2 (11.8)

v(z) = H(Z) - K32 (11.9)

i |
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with
H(Z) = Z ﬁn (11.10)
T Z
and
- _2 dH =
u(z) = - s fz e dz - 2K,Z (11.11)

The coefficient K; may be supposed to be real, and the integra-

tion ocecurring in equation (II.1l) must be made in such a manner that
g[p(z[] will be an infinitely small quantity of the third order at

least on IZI =1.

2.1.2.4 - Remarks.

(1) The formula (II.8) which is the most important may be estab-
lished immediately from the second formula (I.25). However, the method
followed in the text, even though a little lengthy, seems to us more
natural; also, it shows more clearly the developments of the func-

tions U, V, W.

(2) Strictly speaking, the hypotheses set forth in the course of
this study must be verified by the solutions found in each particular
case. We shall, however, omit this verification which in the usual
cases is automatically satisfactory.

(3) The results obtained by the preceding analysis and condensed
in the formulas (II.8), (II.9), (II.11) are in all strictness valid only
in the annulus (70,00), but not in the domain (D). However, it is

very easy to extend, by analytical continuation, the definition of H
to (D). Let us now first suppose that (C) contains O in its
interior; since one may write V(Z) in the form

=]

v(z) = H(Z) - Zinzn + B log Z
1

one sees that, since V(Z) is defined by hypothesis in (D), and one

[2¢]
can extend E Ehzn and B log Z inside of (70) up to (C), H(Z)
1
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may itself be defined without difficulty inside of (D). The case where
(C) does not contain the origin offers no difficulty; it is then suffi-
cient to utilize the development given at the end of section 2.1.2.1.

As to the order of the terms neglected when one writes the equal-
ity (II.9) in the domain (D), they are found to be O(Mkzlog k) in
(D) 1in the case where there exists inside of (C) a circle of the
radius Ak (A and 1/x may be considered as O0(1)). Besides, if
that is not the casé€, one may justify the validity of the results of
the formulas (II.8), (II.9), (II.10), (II.11) by making a conformal
representation of the domain (D) on an annulus; the radius of the
image circle of (Co) may be assumed equal to unity; the image circle

of (C) has a radius infinitely small of first order with respect to

k and the study may be carried out in the new plane of complex variable
thus introduced, without essential complication.

2.1.3 - Reduction of the Problem to a Hilbert Problem

If one puts, according to the formula (II.8)
V=v+ 1iv’

with v' denoting the imaginary part of V, one may write on (C) the
relation

Since one may, of course, with the accepted approximations, neglect u
compared to 1 in the second term of the formula (I.28), one sees that
this boundary condition (I.28) affects now only one single analytical
function, the function V(Z); this is a first fundamental consequence

of the preceding study. Formula (II.9) shows that this condition con-
sists in posing a linear relation between the real and the imaginary
part of H(Z) on the obstacle. Now according to equation (II.10) the
function H(Z) is a holomorphic function outside of (C), regular at
infinity; the problem stated which initially referred to an annular
area (D) is thus reduced to a Hilbert problem for the function H
defined in a simply connected region; exactly speaking, one has to solve
an exterior Hilbert problem. This is the second fundamental consequence
of the results of section 2.1.2.

Since we attempt to calculate V(Z) and W(Z) not further than
within O(Mk®log k), and U(Z) within O(Mk?log k), the relation (I.28)
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which is written

, - 2
Ri(v - 1iw) 270230 - 1 dz(l - pz):| = ?g_ ao

may be simplified and reduced to

2
_13[- 1 az(v - iw):l =2%d9

On (C), K2 1is, according to equation (II.1), of the order of Mk?,
and therefore

H=V=v + iv' =v - iw

consequently, H satisfies, on (C), the Hilbert condition

BI:- iH(Z) dz:| = ?g—z ae (11.12)

2.1.4 - Solution of the Hilbert Problem

A function H(Z), holomorphic outside (C), regular and zero at

infinity, satisfying on (C) the relation (II.12) must be found. Let
21
2 =2 +ay+ o=t ... (11.13)
on

be the conformal canonical representation of the outside of (C)
the outside of a circle () centered at the origin of the plane Z;
the adjective canonical simply signifies that 2z and Z s&are equivalent

at infinity.
On (y) we shall put

iP
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r being constant and well determined. Let us put

F(zZ) = 1 log % (I1.14)
One has on (C) or on (%)
Fr(z) 4z = 1 %? = -d = £(0) de (II.15)
with f ©being real; consequently
R|-ig | -glig ¥ _1 =@ el H(Z)
- de = ae F'(z) e =|" F'(2)
and therefore equation (II.12) is written
. H(Z) pZ de
RIli = 2 T = IIol6
=" F'(2) B dP ( )

H(z)/F'(2) is a holomorphic function outside of (C) and regular at
infinity. Following a classical procedure, we thus have reduced the
Hilbert problem to an exterior problem of Dirichlet.

Let G(Z) be the holomorphi¢ function outside of (C), real at

2
infinity; its real part assumes on (C) the values E%— %%. G(z) is
determined in a unique manner. According to equation (II.12)
H(Z) = -iG(2)F'(2) + icF'(Z) (11.17)

with ¢ being a real constant.

However, we have seen (section 2.1.2.3) that the coefficient of l/Z
in the development of H(Z) around the point at infinity (coeffi—
cient Kl) was real; now, around the point at infinity

a.
ir(z) = - % + —% ...

N
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In order to have the development of the second term of the formula (II.17)
admit a real coefficient of 1/Z2, € must be zero since G(Z) is real at
infinity. Thus the desired solution 1s

TV T, e !
TS
B

’gb’

H(Z) = -iG(2)F'(2) (11.18)

With the function H(Z) thus determined, the formulas (II.8),
(11.9), (II.11) permit calculation of the complex velocities U(Z),
v(z), W(Z) within the scope of the accepted approximations. Thus the

problem posed in section 2.1.1 is solved.

P i iR SO

e

Al

Remarks.

(1) Uniqueness of the solution.- The preceding reasoning shows the
solution of the Hilbert problem satisfying the conditions (II.16) to be
unique. This result will be valid for our problem if one shows that
every function satisfying the condition (II.16) is a solution of the
initially posed problem (condition (II.1L)) which is immediate since it
suffices to repeat the calculation.

(2) Calculation of the coefficient K7 .- According to what has been
said above, the coefficient Ky 1s equal to the (real) value assumed by

G(Z) at infinity. In order to find G(2), we may solve the Dirichlet
problem in the plane 2z; according to a classic result of the study of

harmonic functions, K; 1is equal to the mean value of sz %% on the

circle (7). Hence

an 2,2
2nJg B a4 w8 J (¢) B

wherein S represents the area inside the contour (C).

2.2 - Applications

2.2.1 - General Remark

Let us consider a cone of the apex O 1in the space (Oxl,xz,x3),
the image of which in the plane 2 is the curve (C), defined by its
polar equation p(8). According to the definition of p (see the
remark of section 1.2.5) the sections of this cone made by planes par-
allel to Ox2x3 are homothetic to the curve

~

[
e




42 NACA T 1354

Xp = —2P _ cos @ X3 = —20_ sin g (11.19)
1+p 1 + p2

In the case of the linear approximations, with grad u, grad v,
grad w being infinitely small (it would even be sufficient that they
should be limited), one sees that one may, within the scope of the
approximations of section 2.1, simplify the formulas (II.19) without
inconvenience and write them

Xo = 2p cos 6 X3 = 2p sin 6

hence the result,, essential for the applications.

The curve (C) in the plane Z is homothetic to the sections of
the cone obstacle made by planes normal to the nondisturbed velocity.

Let us likewise consider a cone with variable but small incidences
so that the flow about the cone should always be a flow in accordance
with the hypotheses of this chapter. One sees that if the orientation
of the cone varies with respect to the wind, the curve (C) in the
plane Z wundergoes a translation.

2.2.2 - Study of a Cone of Variable Incidence

This last remark allows us to foresee that when a thorough investi-
gation of a cone has been made for a certain orientation with respect to
the velocity it will not be necessary to repeat all the work for any
other orientation. This we shall specify after having demonstrated the
following lemma.

2.2.2.1 - Lemma .- One may write on (C) that

2 _
207 d6 _ 2 rl,7 22 ) (1I.20)
g av B~ dz

Actually, let us put
Z =p cos O + ip sin 6 = X + iY

X and Y may be considered as functions of O.
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Hence one deduces that

tan 6 =

b1
1
3

and consequently

™ |
@

p2 %6 - Z—(Y'CPX - X'CPY) =

w

w |
1t
|-l.

N
erytel]
RS

BlR

1

™ |
I

M w ]

[\

QIQ
LN N i

which establishes the formula (II.20).

2.2.2.2.- Let us now consider twoc contours (CO) and (Cl) defined
in the plane Z by two functions Z(O)(@) and Z(l)(@) such that

Z(O) = Z(l) + o, o Dbeing a complex constant determining the change in
orientation. In the development (II.13) which gives the conformal repre-
sentation, only the coefficient ag varies when one passes from the

contour (CO) to the contour (Cl). Consequently

T CO R
dz dz

and the Dirichlet condition determining the function G(l)(z) is written
in the plane =z

- B — dz B~ dz - dz

(we have omitted superscripts for the quantities which retain the same
value, affected by the index O or 1). Consequently

(L) = a0 (z) + 2[a(s
cM(z) = ¢ U+B@ﬂ

since g(z) is a regular function and real at infinity, holomorphic out-
side of (7), the real part of which on (7) assumes the
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values R(az dZ/dz), g(z) is then very easily determined. One has
exactly

g(z) = Ez(%% - ) + ar?

Thence for the function H(l)(z), (since F'(2) = i/z dz/az)

(1) (z) = w0 (z) + % a(l - iz_) s o 2 dz (II.21)

The formula (II.21) gives immediately the solution of the problem of
change in orientation with respect to the nondisturbed flow.

2.2.3 - Cone of Revolution
We shall study first of all the case of the cone of zero incidence.
One may then do without the preceding analysis and obtain the solution

directly; that is what we shall do here. The curve (C) is a cirecle of

the radius p = c°® = r; the relation (I.28) is written

2rg
B(l + r02>

On the other hand, for reasons of symmetry

Vv cos 8 + wsin 6 =

v sin @ -wececos 6 =0

Hence one deduces immediately the values of v and w on (C)

2r. cos 6 2r. sin @
v = -0 - W = 0

B©.+rf) B@.+r£)
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!
whence
2 2
- 2ar 2r,
v(z) = 0 n (l - ) w(z) = i-————Jl———-GL + z)
B(l - T Z B(l - rol") Z
(11.22)
Finally the relations (I.25) permit the calculation of U
2 2
B AU = - — X0 22 (1L+2zE\ _ _k_To 1
3(1 - roh) 72 + 1\ z2 B1.-ryt2
whence
r 2
uz) =% 0 10z (I1.23)
B2 1 - ot

We shall now study, returning to the method of section 2.1, the
case of a cone of revolution with incidence.

The formula (II.13) is written

z =2 - a

a being a constant which may be supposed to be real.

Consequently

FIZ= i
(2) = 52
On the other hand, an immediate calculation shows that

de _ r(r + a cos 9)
a® pz
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and consequently
3&2_ a8 . -Z-(rz + ar cos CP)
B 4da» B
whence
2 [ ar?
G(z) = &{r~ +
B8 Z - a
According to equation (II.18)
2 2
H(2) = 2(r2 4+ _ar > l - Z
Z -a/Z - a B (z - a)z
the calculation is easily accomplished; one finds
Zrz 1
v(z) = z -1 (1I.24)
P (z - a)2
and
2 2
U(z) = 4 I |log(z - a) - 22— - & + laz (1I.25)
32 2 - a (z - a)z
since

2
Kz = +)+a r_
B

In particular, one finds, if a = 0, by means of the approximate
formulas (II.24) and (II.25), the same result as by the formulas (II.22)
and (II.23) under the condition of neglecting in these formulas the term

; b
in ro

of the denominator.

In order to give to these formulas a directly applicable form it
suffices to again connect the quantities a, r with the geometrical
data; for this purpose, one must use the formula defining p (p. 42).
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Figure 11 represents the cone section made by the aerodynamic plane
of symmetry; o 1s the semiangle at the apex, 7 denotes the angle of
the cone axls with the nondisturbed velocity.

One has -immediately
2r = Ba 2a = By

Finally, we shall utilize for the calculation of CP the for-

mula (I.11) since the velocity component u is infinitely small com-
pared to the components v and w. This formula is here written

Cp = -zg_[u(z):l - Iv(z)lz (1I.26)
According to equations (II.24) and (II.25) one has

Cp = 2aflog éL - o? - y2 + hay cos 6 + 2y%cos 26 (11.27)
[o }

The case of the cone of revolution of zero incidence is obtained
by making 7y = O. One finds then again a known result. The for-
mula (IT.27) had already been given by Busemann (see ref. 9) without
demonstration.

2.2.4 - Elliptic Cone

We assume first of all the simplest hypotheses where the
planes OxpX5, Oxlx3 are symmetry planes of the flow (U is in the

direction of the cone axis), with the cone flattened out on 0x1 %o«
The formula (II.13) may be written in the form

2
Z =z + &
z

or

2 2
p cos 6 + ip sin 6 = (r + %;)cos P + i(r - %;)sin ¢
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Hence one deduces successively

2 2
tan 6 = 5 =8 _ tan @
r° + a

as _ cos?g r2 - a2 - (rz _a_b’>_l_
ae cos?P r2 + g2 p2

and
2,240 _2[2 _a
B a® B 2

The Dirichlet problem, which permits calculation of G(Z), is
readily formulated; since G(Z) has a constant real part on the con-
tour (C), G(Z) is constant:

'd;Z—=l—a—- F'(Z):l__._l—
dz

N
N
T
!
N |
AV BN AV
S——

whence

and

H(z) = 2(r? - §;>____!;____
B I‘z ZZ - 4a2

We note besides that K2 = 0.
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One calculates V(Z) by the formula (II.9)

R v(zZ) = 3(r2 - &lf) —L .z (11.28)
B rz ZZ - 48_2

and U(Z) by the formula (II.11l) which may also be written

-E—'EH - K - fG @ZA - zEZVZI (II.29)

u(z)

whence

U(Z) = _)4'_([-2 - é&)(log 7 - __2_6'?_
82 2 2 _ a2

or

2 .2 2 .
u(z) = i(rz - ﬁ) 1og 27 V72 - ke + V7P - bef - 2 (11.30)
B2 2 72 . LaZ

If one makes a = O, one will find again the expressions already
obtained for U(Z) and V(Z) in the case of a cone of revolution of
zero incidence (formulas (II.24) and (II.25) in which one makes a = 0).

We shall denote by ¢ and by 1n the principal angles of the
elliptic cone (see fig. 12). One has

= aZ)
B = 2(r + -
= aZ)
e = 2<1‘ -
whence
2
r:ﬁ(€+'ﬂ) a2=%(€2_n2)
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The pressure distribution on the cone circumference is easily cal-
culated. It is sufficient to apply the formula (II.26); besides

2.2
IV(Z)|2= I
1 cosz¢ + ¢7sin™®
and
2.2
BEI(Z)]=€nlOgE(-€—lLul + 1] - €
nzcosz@ + €@sinZ®
hence the final formula
B(e + ﬂ)l €n
C, = 2¢n| - log|~——">=L] - 1 + (11.31)
P b z(nzcosz$ + ezsin2$)

The case where the velocity is not in the direction of the axis
may be treated equally by utilizing the formula (II.21). 1In this formula
one must put

L 2
H0(z) = 2(r2 - 2_)__1 iz _, _ =&
B rz az dZ 22
27
One then obtains
H(l)(z)=ar2_.a_”__z_+§;1- 22 L ar? _ 2%
£ r2/ 22 - a2 B z2 - al 28 22 - g?
Iy -
= 2 (%2 - §—>z + ar® - aa?
hence, remarking that
al
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and

On the other hand, we shall caleculate U by utilizing the vari-
able z and the formula (II.20). The coefficient K, is equal to

Y _
K, = 2 <r2 - 9—)& + ar® - oa®

and U(z) is then given by the formula

L 2 alt 228 + az) aal - qré 2 E2
U(z) = = |{r® - 2=} {1og z - + 2z° + az)| + 4 £ Z
Bz ( r2>( 22 - a2 z(z2 - az)( ) B

(11.32)

One will note that, if one puts o = O, one finds again the for-
mula (II.30), and that, for a = 0, one finds again the formula (II.25),
except for the notations.

Thus one can, without any difficulty other than the lengthy writing
expenditure, calculate the pressure distribution coefficient on the
elliptic cone of any arbitrary orientation with respect to the wind.
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2.2.5 = Calculation of the Total Forces

We have already seen in section 1.2.6 that the normal to the conical
obstacle directed toward the outside has as direction parameters

%<x3x2' - x2x3'), x3', -Xp'

Let ?? be the unit vector coincidental with this normal, s be
the area of the section with the abscissa x3, L the length of this

section; one may make correspond to the resultant of the forces acting
on a section (Xl’ X7 + dxl) a (dimensionless) vector

—> _ 1 ->
C, = - EfCPn ds (I1.33)

situated in the plane x2x3, and a dimensionless number

1 —>>
Cy = - il/PCP(nU)dS (I1.34)

—
the vector C, characterizes the 1lift, the number C, the drag.

The integrals appearing in the formulas (33) and (34) are taken
along the section. Naturally C, and C, are independent of this

p2
section. One may also replace z» the real

-
Cy
and imaginary parts of which are equal to the components of the vec-
tor C, on Oxp and Ox3. For calculating equations (I1.33) and (II.34)

one may utilize the section xj = g. If we assume 1 to be the length

of the contour (C) in the plane Z, we may write, taking into account
the habitual approximations

by a complex number C

_1
C, = 7/ Cp 4z (11.35)
c
and

R if CpZ dz (11.36)
c
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with the integrals appeering in equations (II.35) and (II.36) taken in
the plane Z. These integrals present a certain analogy to the Blasius
integrals (ref. 13); Cp 1is given by the formula (I1.26); unfortunately,

it is not possible to give simple formulas for the total forces since
the integrals (II.35) and (II.36) make use of all coefficients of the

conformal representationl9.

We shall apply the formulas (II.35) and (II.36) to the case of the

circular cone; CP is given by equation (II.27)

- 2 2
dZ=i%eied9 ZdZ=i§hLd9 1 = npa

One obtains

C, = -2ay Cy = 2a3log 32.; - a3 - ay? (1I.37)

In the case of the elliptic cone of zero incidence, C, 1is obvi-

ously zero

. 2 . s 2 .
-i® + a el(p dz = iE.elcp _ ?.F_ e-lﬂdcp

whence
21
A 2 ah \jp
C, = = - = C, ae
* B1<r 2) o °

with Cp being given by formula (I1.31). Now

I o)
f en do _ f en_dt
-1 Z(nzcosa$ + ezsinap) - nz + €22

l9See appendix No. T.
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As one can see immediately by putting

t = tan @

the calculation of this last integral is immedisate.

Thus one obtains

C, = 218 2q2l10g 1 I1.38
with 1 Dbeing the length of the ellipse with the semiaxes %?, %?.

2.2.6 - Approximate Formula for the Calculation of Cyg

Let us consider the function U(z); according to formula (II.11)

and the remark 2 of section 2.1.4 one may say that the principal term
for U(z) is

U(z) = 4 5_ 1og 2
7pe

Consequently, in first approximation

Cp:;ﬁ_logr
nBz

with S being the area inside of the contour
of the circle (7)

(C), and r the radius
sentation of (C).

on which one makes the conformal canonical repre-

If one now calculates Cy, taking into account this
approximate formula, one has, according to equation (11.36)

- 1858 . -
CX = - —-3— log rB 1 f Z 4z
npr1l c

whence

2
Cy = + 325 10g % (I1.39)
nB3Z
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We shall state: 1In every first approximation the value of the
drag coefficient C, is given by the formula (II.39).

2.2.7T - Case Where the Cone Presents
an Exterior Generatrix

If the contour (C) shows an exterior angular point, the various
functions introduced in the course of the study (first paragraph of
this chapter) present certain singularities. These singularities we
shall specify. Let 25 be the designation angular point of (c), and

& the angle of the two semitangents to (C) at the point 2Zp(0 <& < 1)
(see fig. 13); if. 2 is the image of the point ZO in the plane 2z,

one may write, according to a well-known result, in the neighborhood
of ZO

(E2), - ¥ - 20"

with K ©being a complex constant and k =1 - 8; consequently

k

[F'(Z,):Io = Kl(z - z())—k = Kz(z - Zo) 1+k

with K, and K, being complex constants. F'(Z) thus becomes infinite
at the point 2 = Zg.

In contrast, the function G(z) has, according to definition, a
real part which assumes on the circle (y) +the values

2 R[}E 9%]
B~ dz

This real part thus remains finite on the circle () (and it
satisfies there a condition of Holder). According to a known theorem,
its imaginary part likewise remains continuous on (y) (and likewise
satisfies a condition of Holder). Consequently, one sees, if one refers
to formula (II.18) that
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k

H(Z) = K3 (z - Zo) 1+k

in the neightorhood of Zgy; likewise, U, V, W will, in the proximity
k 1.
+ Z—ZO

of this point, be of the order with respect to

Thus the analysis made 1n section 2.1 is no longer applicable to
this case. However, the formulas (II.35) and (II.36) show that if the
pressure coefficient assumes very high values in the neighborhood of
Z = Zg, the total energy remains finite. According to what we have

indicated in section 1.1.3 we consider the solution still valid, with
the understanding that the values of CP in the surroundings of Z = Zj

are not reliable.

2.2.8 - Delta (A) Wing of Small Apex Angle
at an Infinitely Small Incidence

If one puts in the formulas ré = az, at the end of section 2.2.4,

one obtains the pressure distribution on a delta wing with small apex
angle. Let us recall that a delta wing is an infinitely small angle.
Its angle, according to definition, is the half-angle o at the vertex
(compare fig. 14). Thus one has

op = La

The formulas (II.31) and (II.32) are applicable to a delta wing of
small angle placed at an incidence also rather small.

Let us moreover assume that this opening is infinitely small with
respect to the incidence. Under these conditions, the formulas yielding
U(z) and V(Z) are written

V(z) = 2 @-= @ Z - VZ2 - ha?
pe 2 ,Zz _ L4a?

el

2 2 _
ha + 823 - )z (TI.L0)

2 JZZ - L2 Bz

__ 4 a
u(z) = "
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Actually one is justified in omitting the second-order terms with
For calculating Cp it suffices to apply the for-

respect to «.
mula (II.8); the second term of the second formula (II.4O) may be

_neglected.
With the incidence 7, the delta wing being parallel to Oxp, one has

7B = 2ia

Finslly, one may put along the A

7 = 2a cos @ = %? cos @

One then finds
2wy (I1.41)

P sin @

is related to the angle V¥ of figure 1k

We remark further that @
by

2VB = wp cos @ Vo= Q_Q%Qig

One may state: the pressure coefficient on a delta wing of infi-~
Mach number of the flow.

nitely small opening angle is independent of the

One has

if one applies formula (II.35), one finds

C, = imwy
This coefficient C, has not the same significance as the one
Actually, it is, according

utilized in the theory of the lifting wing.
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to the very manner in which it was obtained, relative to the total area
of the A (pressure side and suction side); if one takes only one of
these areas into account, one must write (neglecting the factor -i)

C, = anwy

This formula has been found by other methods by R. T. Jones
(ref. 14). We shall find it again in chapter III, section 3.1.2.4, when
studying the general problem of the delta wing which is here only touched
on incidentally and for the particular case of a A with infinitely

small opening angle.

2.2.9 - Study of a Cone With Semicircular Section

As the last application, we shall treat the case of a cone with
semicircular section, with the velocity U being directed along the

intersection of the symmetry plane and of the face plane of the cone?0

(fig. 15).

The contour (C) in the plane Z then is a semicircle, centered
at the origin, of the radius a (fig. 16).

One obtains very easily the conformal canonical representation of
the exterior of this contour, on the outside of a circle (y) of the

radius r, centered at the origin of the plane 2z, by means of a par-
ticular Karman-Trefftz transformation (ref. 13, p. 128) which is written

3
-i%—' 2
Z-8 . |z-Te (II.42)

Z = re

a and r are connected by the relationship

ha = 3nf§

In order to obtain the correspondence between the circle (y) and
the contour (C), one must distinguish two cases. Let us put

z = rel®

208ueh a cone formed the front of supersonic models planned by
German engineers.
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(1) - L<o < 15, the corresponding point of (C is on the arc
6 6

of the circle.

Let us put under these conditions
iv

Z = ae

and we shall find according to formula (II.42):

sincg + 3L> %

tan I = —_Z__Ji (II.).;.3)
2 sin(f2 + EE)
2 12

i x
(2) z <P < z

ment AA'; let us put under these conditioms

the corresponding point of (C) is on the seg-

Z = a cos X

The formula (II.42) shows that

(II.44)

The two last formulas define completely the desired conformal
representation. Figures (17) and (18) give the variations of V¥ and X
as functions of @.

We shall have to utilize equally the value of dz/dZ. The simplest
method for obtaining this value consists in logarithmic differentiation
of the two terms of formula (II.42). One thus obtains the result

dz _ z& + irz - r@ (II.45)

az 72 _ .2
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If one has

NACA TM 135k
- % <0< 762’ one must put in the preceding formula
z = rei® 2 = aeiw

whence
dz . r? 1 +2sin® i(0-¥) _ 8 1+ 2 sin® i(P-V) (I1.46)
dz 5,2 sin ¥ 27 sin V¥
If ¢ 1is comprised between In and l%E’ one puts 2z = rei@,
Z = a cos X. Thus one obtains
/T
i(=-0
dz _ 161 + 2 sin @ (2 )
—_ = = =€ (II.47)
dz a7 sin2X
The function G(Z) has as its real part B_[:zz g—ZZl, that is
Z
\
Blar _—sinV 4 _togp<lx
8 1+ 2 sin® 6 6
> (11.48)
0 if Z-’1< P < L
6 6
The analytic function
al 2 42
Z dz
has a real part which, on (y), assumes these same values. This func-
tion is regular at infinity, holomorphic outside of (7), but with a
pole =z = -ir, with the corresponding residue being equal to -ia?,
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Let us then consider the function

This function is holomorphic outside of (y). It is regular at
infinity; its value at infinity is equal to az/%. On (7), these real

and imaginary parts satisfy Holder conditions. This function is there-
fore identical with the desired function G(z).
Hence one deduces according to equation (II.18)

1(2) =<;iz l_z-ir)é_z_siz:a__a____z-iréz

72dz 2z + ir) z 4z VA 2z z + ir 4Z

and according to equation (II.19)

Finally, the calculation of U(Z) may be carried out with the aid
of formula (II.29)

2 .
ngl_z_=a210gZ_i_fZ_-_.Lr_d_Z=a2(10g—f'___+-]2=logz>
r

Z 2 J z+ir z Z i
and
=S ig D) - Y
whence

2 ; LK,Z
U(z)=§_(z_-_1rzd_2._1+ 2 +zlog_Z___+1ogz)
2 z + ir

The calculation of the coefficients Ré offers no difficulty what-
soever; however, as one had already opportunity to note, the term R%Z

does not occur in the calculation of the pressures along the cone.
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This pressure distribution along the cone calculated with the aid
of equation (II.26) is represented in figure 19.

2.3 - Numerical Calculation of Conical Flows With

Infinitesimal Cone Angles

2.3.1 - General Remarks

In the preceding paragraph, we have studied a certain number of
particularly simple cases. However, if the cone (C) is arbitrary, it
will be necessary to carry out various operations leading to the solu-
tion by purely numerical procedures.

Let us analyze the various operations necessary for the calculation:

(1) The conformal canonical representation of the exterior of (C)
on the outside of the circle (y) must be made; this calculation per-
mits, in particular, determination of the radius r of (7), corre-
spondence of the points of (C) and of (7), and calculation of the
expression dZ on the contour (7).

(2) The function G(z), holomorphic outside of (7), regular and
real at infinity must be determined, the real part on (y) of which is
known; we shall designate it by g(@). In fact, it suffices to know,
on (y), only the imaginary part of G(z), for instance g'(®); g'(®)
is the conjugate function of g(®) and is given by the formula

2n
QM=Lf g(®)eot =2 g9
21 0 2

This formula is called "Poisson's integral."

(3) With these two operations accomplished, the values of H(z) on
the circle (7) (formula (II.18)) are known which provides the values
of v and w on the cone; u 1is obtained by the formula (II.29). The
only new calculation to be made is that of the expression:

5[- fc,@_] [e a0

the constant of integration being determined so that wu should have a
mean value zero on (7).



NACA ™ 1354 63

All these operations always amount to the following numerical
problems:

(a) With a function given, to calculate its conjugate function
(Poisson integral)

(b) With a function prescribed, to calculate the derivative of the
conjugated function

(c) With a function prescribed, to calculate its derivativeZl.

We shall justify this result in the following paragraph by showing
that the operation (1) may be performed by applying the calculations (a),
(b), (e). We shall then indicate a general method, relatively simple
and accurate, which permits solution of these problems. We shall ter-
minate this chapter by giving an application.

2.3.2 - Conformal Canonical Representation
of a Contour (C) on a Circle (y)

The numerical problem of determination of the conformal canonical
representation of a contour (C) on a circle (») has been solved for

the first time by Theodorsen®2. We shall briefly summarize the principle
of this method, simplifying, however, the initial exposé of that author.

Let us suppose, first of all, that the contour (C) is neighboring
on a circle of the radius a, centered at the origin (fig. 20); in a
more accurate manner, putting on (C)

7 = aeV*i® (II.49)

with V¥ %being a function of 6, V = ¥(8), we shall suppose that V(6)
av

and 55 are functions which assume small values. We shall then call

217f the conformal representation of the exterior of (C) on the
outside of (y) is known in explicit form, it will naturally be suffi-
cient to apply operation (a).

22Compare references 15 and 16. One may achieve this conformal
representation also by the elegant method of electrical analogies (ref. 17);
the time expenditure required by the experimental method and by the purely
numerical methods here described as well as the accuracy of these pro-
cedures are of the same order of magnitude.
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(c) M"quasicircular.” 'Let ® be the angular abscissa of the point of
(y) which corresponds to the point of (C), the polar angle of which
is 6; we put

6 =0 + ¢(®) ? =06 - €(0) (1I.50)

c(6) and €(P) representing the same function but expressed as a
function of € or as a function of @; we shall put likewise

V() = V(o)
The desired conformal transformation may be written
z = zeh(2)

with h(z) being a holomorphic function outside of (7), regular and
zero at infinity. The equality (II.50) becomes, if one writes it on the
cirecle (7),

(T[] - ettt

whence
h(z) = 2¥() + 1c(@) + log & (11.51)

Finding the conformal representation of (C) on (®) amounts to cal-
culating the functions V(p) and E(P). First of all, one knows (equa-
tion of (C)) that

¥(e) = WEP + ?(@ﬂ (II.52)

On the other hand, according to equation (II.51), c(p) 1is the conju-
gate function of V(p), and consequently

(o) = 2%/;21( W(cp')cot(L'z‘—cﬂ)&P' (1I.53)
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the integral being taken at its principal value.

65

There is no constant
c(®) has a mean

to add to the second term of equation (II.53), for
is zero at infinity. For the same reason, if

value zero since h(z)
WO denotes the mean value of W(¢) in an interval of the amplitude 2=
(11.54)

r = ae$0
if V(P) is known.

an equality which will permit calculation of «r
and W(@), one disposes therefore of the

In order to calculate €(9)
relations (II.52) and (II.53); one can solve this system by a procedure

of successive approximations.

We shall put first

According to equation (II.52)
(o) = ¥(e)

and according to equation (II.S53)

2n
(6) = ;ijf V(6" )ecot £ =8 gp:
an 0 2

Thence a first approximation for ¢

cPl =6 - 61(6) 6 = cPl + —é-l(q)l)
From it one deduces, according to eguation (11.52), a first aspproxima-
tion for V(o)

V() - WEpl * E1(@1ﬂ

whence a second approximation for the function ¢
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whence

P, = 6 - €,(6) 6 =, + Ez(fpz)

The procedure can be followed indefinitely.

The convergence of the successive approximations forms the subject
of & memorandum by S. E. Warschawski (ref. 18). We refer the reader
who wants to go more deeply into that question to this meritorious
report.

From the practical point of view one may say that the convergence
is very rapid; two approximations suffice very amply in the majority of
cases; the different changes in variables which encumber the preceding
exposé are very easily made by graphic method. Thus one sees that the
numerical work essentially consists in calculating twice the inte-
gral (II.53). This calculation is precisely the object of the prob-
lem (a) stated at the end of section 2.3.1.

If the contour (C) is not '"quasicircular,” one may make, first
of all, a conformal representation which transforms it into the "quasi-
circular" contour (C'); one will then apply the preceding analysis to
the contour (C'). For certain cases it will be quicker to use a direct
method. Let us assume, for instance, that (C) 1is a contour flattened
on the axis of the X (compare fig. 21) and for simplification that
X'0X 1is permissible as the axis of symmetry.

Let us suppose that X varies along (C) from -a to +a while
|Y| remains bounded by ma (with m being, for instance, of the order
of l/lO); it will then be indicated to operate as follows:

We put along (7)

7 = -f;[f(cp) + ig(@ﬂ
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One has
X(P) =f cos ? - gsin @ L
(11.55)
Y(®) =f sin® + g cos @
or also
f=Xcos?P +Y sin®
> (11.56)
g=Ycos?P - Xsin?®
J

f(P) is an even function of ¥, g(P) is an odd function
£(0) = +f(x) = 2 g(0) = g(x) =0

The functions X(®) and Y(?) have to be found. Let us take as
starting point

XO(@) =a cos ¢

an approximation which would be definitive if (C) were an ellipse.

On the contour (C) one reads the corresponding value Yo(w), and

by means of the second formula (II.S56) one obtains a first approximation

g1(9) = Y5(P)cos ¢ - Xy(P)sin @

fl(w) will be given by a Poisson integral

an
fl(Cp) = _;'_f gl(cp)cot u dap' 4+ )‘41
anJ g 2

with A being a constant, such as f1(0) = a.

Owing to the formulas (II.55), one has a first approximation X;(?),
Yl($) for the functions X(¥), Y(P?). One proceeds in the same manner,
reading off on (C) the functions Y;(®) corresponding to X;(¢), then
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calculating

gz(q)) = Yl((P)COS ¢ - Xl(CP)Sin o

and

1n

=1 1 o -9 '
f = P t dao
2(@) > o gz( Jco > + Ao

etc.

When one hag obtained a pair fn(Q), gn(@) providing a sufficient
approximation X (9), Y,(®) of X(?), Y(¥), one stops the calcula-
tions; then

In practice23 it suffices to take n = 2; the same method (averaging
of very slight adaptations) will apply to the case where (C), although
being flattened on O0X, will no longer admit of OX as the symmetry
axis.

Finally, for a complete solution of the problem (1) posed at the
beginning of the preceding paragraph, only dZ/dz remains to be calcu-
lated, which will obviously be possible with the aid of the problems (b)
or (c).

2.3.3 = Calculation of the Trigonometric OperatorsZh

The method we shall summarize permits calculation of the linear
operators A, transforming a function P(8) into a function Q(8)

23The principle of this method is the one we applied for the study
of profiles in an incompressible fluid. But in the case of the profiles
a few complications (which can, however, easily be eliminated) arise due
to the fact of the "tip."

24We gave the principle of this method for the first time in
March 1945 (ref. 19). Compare also reference 20. In continuation of
this report, M. Watson provided a demonstration of the formulas which
we obtained by a different method (ref. 21). We also point out a "War-
time Report" of Irven Naiman, of September 1945, proposing this same
method of calculation for the Poisson integral (ref. 22).
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Q(e) = A[P(6)]

and re-entering one or the other of the following categories:

First category: The operator possesses the following properties

A(cos mo) = a; sin m@
A(sin m@) = -a cos m6 ¢ (11.57)

A(1l) =0

with a, Dbeing a nonzero constant, m any arbitrary integral different

from zero.

Second category: A possesses the properties

A(cos m6) = by cos me
A(sin m6) = by sin mo

A(1l) =g

with by, being a nonzero constant, m any arbitrary integral.
We shall call these operators "trigonometric operators.”
operations which form the subject of the problems (a), (b), (c) are,
precisely, particular cases of "trigonometric operators."

With the function P(6) known, one now has to calculate the func-
tion Q(8); the functions P(6) and Q(6) are assumed as periodic, of
the period 2n. P(8) and Q(8) are determined approximately by knowl-
edge of their values for 2n particular values of 6, uniformly dis-
tributed in the intervel O, 2x. One knows that the unknown 2n values
of Q are linear functions of the known 2n values of P. The entire
problem consists in calculating the coefficients of these linear equa-
We shall do this, examining two possible modes of calculation.

The

tions.
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2.3.3.1 - First mode of calculation.- After having divided the
circle into 2n equal parts, we shall put

(1) Operators of the first category.- Obvious considerations of

parity show that the Q; are expressed as functions of the Pj by

equations of the form

n-1
9 = lZKp(Pi+p - Pi_p) (II1.58)

We shall apply the relations (II.S57), that is, carry into the 2n
equations (II.58)

cos mé Q(e)

P(9) ay, sin me

and

P(6) = sin m6 Q(0) = -ap cos mb

We thus obtain Un equations which are all reduced to the unique
equation

n-1
ZKP sin p 2% - az—m (17.59)
1

This reduction is the explanation for the success of the method.
We have to determine (n - 1) unknown Kb. For this purpose, we shall

write the equation (II.59), for the values of p varying from 1 to
n - 1. The system remains to be solved. If one multiplies the first

equation by sin %?, the second by sin 2%5, the (n - l)th by

sin(n - l)%?, and if one adds term by term, one obtains a linear rela-

tion between the Kb, with the following coefficients of Kb
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=

n-1 n-1
sin m EI_I_ sin m E = [cos m M— - cosS m M_ﬂ'_]
: n n Z n n

m=1 m=1

i
0 (-
)
~~
o
Ft [}
=
(e
A
L1
1
Q
=)
~—~
kel
n|+
=
EY
L

with
n-1 sin = x
Cn(x) = E COS mMX = cOSs (n ; 1) X 2
m:o S in -}25

Thus the coefficient of Kb is zero if p # u, and equal to % if
b= W

Thence the desired value of Kp

n-1
Ky = - %.ZE: ay, sin EEE (11.60)

m=1

Let us apply this result to the calculation of the Poisson integral.

This integral defines an operator Q = A(P) of the first category
for which a, = -1.

Consequently, the formula (II.60) is written

Bl

Kp:

n-1
E sin Iﬂ = l Sn<..p..7£)
n n n
1

if one puts

n-1 sin X
S, (x) = E sin mx = sin (n - 1)x 2
" 2 sin =

1 2
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Thus

I
o

if p even

5

(11.61)

1 oot B :
Kb = cot o if p odd

(2) Operators of the second category.- The considerations of parity
permit one to write the general formula

n-1
= KgPy + ) Kp(Piap * Pip) * KnPiun (11.62)
1

Using the same reasoning as before, one 1s led to determine the coeffi-
cients Kb by the system

n-1
+ E 2K}, cos m £ =+ ( - l)mKﬁ (11.63)
p=1
with m assuming the values 0,1, 2, . . . n.

Multiplying the first value by l/2,‘the second by cos uﬂ/n, the
third by cos Eﬁﬂ, the nth by cos KE-:EEIEE, and the last by ( - 1)M2,
and adding them, one obtains a linear relation between the K?, with the
coefficient of K, being (p £0, p#n)

L oo, prﬂ] o]
2 2 n

that is, n if p=p, and O if u £ p.

The coefficient of KO is

b Ll gl veu( - ) -
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The preceding conclusions remain valid, it is zero for u ﬁ 0 and equal
K,- Finally, one

if u = 0; the same result is valid for

to n
obtains the general formula of sclution

1|Po f;fi mps o

= |0 P - 1)p 1

Ky == 5 + by cos —=—— + (-1) > (11.64)
m=1

Let us consider, for instance, the operator transforming the func-
into the function dQ/dQ, with Q being the conjugate func-

tion P(6)
tion of P; it is an operator of the second category for which

bm = -m

Applying formula (II.6L4), one obtains

= .1
KO 2
1 n-1 ot b
= - _.:E pm - 1)p_n
KP = m cos —— + ( -1) > PpFO
1
If one notes that

— 1  |nsinfn - l)x - sin2 DX
2 2

n-1
E (x) = E m CcoSs mx =
n ., 2 X
0 2 sin 5

one sees that
if p even

% = 0
>
1 if p odd

Kp - n(l - COSs BE)
n
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2.3.3.2 - Second mode of calculation.- Examination of an important
particular case will show us that in certain cases it will be advantageous
to consider a second mode of calculation.

The method consists in replacing the function P(6) by a function
of the form

n
o(6) = E ay cos né + by sin né (I1.66)
0]

for which the method is applied with the strictest exactness; the con-

stants an and .bn are such that Pi =0y One operator of the first

category, one of the most important ones, is the operator of derivation
which makes the function dP/d@ correspond to the function P(6). If

we apply the first type of calculation, we shall replace (%g) by
i

(QQ> ;3 now, it is precisely at the points 6 = IT  that the deriva-

I
dao/4 n
tives £ ang %% show the greatest deviation. In contrast, we shall

obtain a good approximation of the desired function by replacing

Q[(Zi + l){] by QQIEZi + l)n:l
de 2n deé 2n

We are thus led to the following mode of calculation: the circle
is divided into Ln equal parts; we shall put

in
£. = (2
1 (Zn)

and we shall express the 2n values Qp; as a function of the 2n values
Paj+1-

We shall limit ourselves to the operators of the first category.
The formula expressing the QZi as a function of P23+l is written

n
Qi = § Kp<PZi+2p—l - P21-2p+1)
p=1
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and we obtain for determination of the Kp the system
9 (2p - 1)
> K, sin Ao 3’22
n
p=l
with m wvarying from 1 to n.
Multiplying the first equation by sin{(2H - l)-zlrﬁ, the second by

sin (2u - 1)(n - l)ﬁ, the
2n

sin @;—:'l%-{, .+ ., the (n - l)th by

u-1
last by L'——IZL)—— and adding them, one obtains a linear relation in
which the coefficient of Kﬁ is

n-1
- H+D
E sin(2p - 1)ZL sin(2p - 1)EE + (-2) =
1 2n 2n 2
m=

n-1 -
?%l}os(p - u)m—:f- - cos(p + M - l)rgl-ﬂ:l + -(—'2—1)“ P

%[nE - u)%] - CnEP + W - l)-’%:l + (- l)pﬂzl

The coefficient is zero if p ;é M, and equal to % if p = K. Hence
n-1 -1
1 . (ep - 1)me  ( - 1)P
= - = E sy sin + (11.67
K n on > 8n )

m=1

This procedure may be applied to the calculation of the derivative
of a periodic function. In this case, a, = -m. Applying formula (II.67),

one obtains
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= ( - 1)p-1 L , (11.68)
& Zn[l - cos -(Z—PZ_—J‘)ﬂ:l
n

2.3.3.4 - Remarks on the Employment of the Suggested Methods.- In
order to convey some idea of the accuracy of the proposed methods we
shall give first of all a few examples where the desired results are
theoretically known.

Let us take as the pair of functions P(6), @q(6), the functions

P(g) = b cos 20 - b cos 6 +1 a(e) = -4 sin 6(2 cos 6 - 1)
(5 - & cos )2 (5 - 4 cos 6)2

which are the real and imaginary parts, respectively, on the circle of
radius 1 of the functiocn

z) = R z = elf
Fle) (2z - 1)2 ( )

One will find in figure 22 the graphic representation of the func-
tions P(6), Q(6) and of the derivative Q'(6) of this function, and
also the values of these functions for 6 = %% (with p ranging
between O and 12). Furthermore, one will find in figure 23 the values
of Q(8), calculated from P(8) as starting point, by the method just
explained (coefficients K,, defined by equation (I1.61)), and in fig-

ure 24 on one hand the values of Q'(8), calculated from P(8) as
starting point (from coefficients K, defined by equation (11.65)),

and, on the other, these same values calculated from Q(6) as starting
point (coefficients K, defined by equation (II.68)). One will see

that the accuracy obtained is excellent although the selected functions
show rather rapid variations. Such calculations by means of customary
calculation methods are a delicate matter; this is particularly obvious
in the case of the Poisson integral which is an integral "of principal
value." Systematic comparisons of the method of trigonometric operators
with those used so far have been made by M. Thwaites (ref. 23); they
have shown that this method gives, in certain calculations, an accuracy
largely superior to any attained before.

The calculation procedure, with the aid of tables like the one
represented (fig. 25) is very easy. One sees that one fills out this




S e

NACA T™ 1354 1

table parallel to the main diagonal of the table. With such a table,
about one and a half hours suffice for a Poisson integral if one has a
calculating machine at his disposal.

We have had occasion to point out that the accuracy of-the method
obviously increases to the same degree as the functions one operates
with are "regular" and present "rather slight" variations. This leads
in practice to two remarks which are based on the "difference method"
and reasonably improve the result in certain cases. We shall, for
instance, discuss the case of the Poisson integral.

(1) If the function P(6) presents singularities (for instance
discontinuities of the derivative for certain values of 8), it will be
of interest to seek a function Pl(e), presenting the same singularities

as the function P(6), for which one knows explicitly the conjugate
function Ql(e). One will make the calculation by means of the func-
tion P(6) - P1(6); this function no longer presents a singularity.

(2) If the function P(6) has a very extended range of variations,
one will seek a function Pl(e) for which one knows explicitly the

function Ql(e) so that the difference P(8) - Pl(e) remains of small

value, and one will operate with this difference.

Finally we note that, i1f the calculation of the derivative of a
function P(8) as described above necessitates that P(6) be periodic,
one can always return to this case, applying, precisely, the "difference
method."

2.3.4% - Example: Numerical Calculation of a
Flow about a Semicircular Cone

As an application, we have taken up again the case of the semicir-
cular cone studied in section 2.2.9. The function g(P) is given by
the formula (II.48), and g'(®) will be calculated by a Poisson inte-
gral. Figure 26 shows the value g'(?) thus calculated compared to the

theoretical valuezs.

25e wanted to test the accuracy of the proposed method by assuming
an extremely unfavorable case, without taking into account the singu-
larities presented by the function g(?). For a numerical operation of
great exactness, this particular case would have required application
of the lemma of Schwartz, with the contour (C) completed symmetrically
with respect to O0X.
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It is then possible to calculate the representation of the pres-
sures, by calculating successively the function H, ZH, and the inte-
gral g'(®).

One will find the pressure distribution thus calculated in fig-
ure 19; one may then compare the result obtained by the calculation
method (for a very unfavorable case) with the result obtained
theoretically.
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CHAPTER TII - CONICAL FLOWS INFINITELY FLATTENED

IN ONE DIRECTION

The purpose of this chapter will be the study of conical flows of
the second type (see chapter I, section 1.2.6). Before starting this
study proper, we shall make a few remarks concerning the boundary con-
ditions. The conical obstacle is flattened in the direction Oxjxs5.

Under these conditions, reassuming the formula (I.27)

wxp' - vx3' =

wi{-

1 1
(x3x2 - XpX3 )(l +u) (1.27)
one may say that it reduces itself, in first approximation, to

Wle =

w |-

(x3x2' - Xpx3 ') (III.1)

since X3, x3', v, u are infinitesimals of first order, while Xs
and xz' are not infinitesimals. Under these conditions, one may say

that one knows the function w on the contour (C). On the other hand,
one may write, within the scope of the approximations made, this boundary
condition on the surface (d) of the plane Ox1%5, projection of the

cone cbstacle on the plane. Let us designate, provisionally, the

value Ww by w(l)(xlx2x3) if one operates as follows

(1)
W(l)[gl’XE(t)’x5(tE] = W(l)[%l’xa(t)’é] + x3(t) gg— [%i>x2(t)’§]
p)

With the derivatives of w being, by hypothesis, supposed to be of
first order, and the boundary equation written with neglect of the terms
of second order, the intended simplification is justified.

Various cases may arise, according to whether the cone obstacle is
entirely comprised inside the Mach cone (fig. 27), whether it entirely
bisects the Mach cone (fig. 28), whether the entire obstacle is com-
pletely outside the Mach cone (fig. 29), or whether it is partly inside
and partly outside the Mach cone (fig. 30). In each of these cases
there are two elementary problems, the solution of which is partiqularly
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interesting: the first, where the relation (III.1l) is reduced to

w = constant = wo

which we shall call the elementary lifting problem (the corresponding
flow is the flow about a delta wing placed at a certain incidence); the
second, where the relation (III.1) is reduced to

W o= Wp for x3 = +0

w o= —wo for x3 -0

which we shall call the elementary symmetrical problem. This is the
case of, for instance, the flow about a body consisting essentially of
two delta wings, symmetrical with respect to Ox;x, and forming an

infinitely small angle with this plane. It is also the case that will
be obtained, the section of which, produced by a plane parallel to Ox2x5,

would be an infinitely flattened rhombus. The fact that one obtains the
same mathematical formulation for two different cases indicates the
relative character of the results which will be obtained. In the case
of the symmetrical problem one may naturally assume that w 1s zero on
the plane Oxlx2 at every point situated outside of (a).

Let us finally point out that very frequently the obtained results
do not satisfy the conditions of linearized flows; in particular, the
velocity components and their derivatives will frequently be infinite
along the semi-infinite lines bounding the area (d). However, we admit
once more that the results obtained provide a first approximation of the
problem posed above, in accordance with the remarks made in section 1.1.3
of chapter I.

3.1 - Cone Obstacle Entirely Inside the Mach Cone

3.1.1 - Study of the Elementary Problems

The case of the lifting cone has already formed the subject of a
memorandum by Stewart (ref. 10); however, the demonstration we are going
to give is more elementary and will permit us to treat simultaneously
the 1lifting and the symmetrical case.
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3.1.1.1 -~ Definition of the function F(Z).- We shall make our
study in the plane Z. Let A'A(-a,+a) be the image of the cut of the

surface (d)26, (Co>, as usual, the circle of radius 1 (fig. 31).

Naturally, we shall operate with the function W(Z). One of the

conditions to be realized which we shall find again everywhere below is

that dW/dZ must be divisible by (Zz - l), unless the compatibility
relations show that U(Z) would admit the points Z = #1 as singular
points which is inadmissible. Thus we introduce the function

2
F(z) = %2 W (111.2)
72 _ 1 4z

and we shall attempt to determine F(Z) for the symmetrical as well as

for the lifting problen.

F(Z) 1is a holomorphic function inside of the domain (D), bounded
by the cut and the circle (CO); the only singular points this function

can present on the boundary of (D), are A and A'; on the other hand,

F(Z) must be divisible by 22, unless U, V, W have singularities
at the origin. On the two edges of the cut F(Z) must have a real zero

part. On the circle (CO)

z _ _ 1 _ 1
ZZ -1 7 - ; 2i sin @
Z
Z g‘}l— = eie i-w- = —i Q'.K
4z dz 46

Consequently, F(Z) has a real zero part on (CO) as well. The fact

that F(Z) cannot be identically zero, and that its real part is zero
on the boundary of (D), admits A and A' as singular points. We

shall study the nature of these singularities.

3.1.1.2 - Singularities of F(2).- Physically, it is clear that A
and A' cannot be essential singular points. Let us therefore suppose

that, in the neighborhocod of Z = a, one has

26One assumes, as a start, that the problem permits the use of the

plane Oxlx3 as the plane of symmetry.
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F(2) ~ Ky (2 - 2)©

my being arbitrary, KﬁO £ 0; let us put

with @ ©Dbeing equal to +n on the upper edge of the cut, to -n on
the lower edge; for sufficiently small values of r

Mt it
&%;qku% and Q%;%e]mo
nust be purely imaginary quantities; thus the same will hold true for

Kmo cos mg and for iKmO sin man;

Khoz = Kﬁ 2coszm:rt - (iKm sin mn)z
0 0
is therefore real. On the other hand

] 2 sin ZmOn
i

—_— = cos {1 sin nor
2 (Kmo mO)(Kmo O)
must be real which entails

sin Zmon =0

Thus there are two possibilities; let us denote by k an arbitrary
integral; either

my = k, KﬁO is purely imaginary

or else

my = k + %, Kﬁo is real.
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Let us now consider
o
F1(2) =F(2) - ¥ (2 - a)
In the neighborhocod of Z = a
m
Fi(2) ~ Kml(z -a)d

and the same argument shows that 2Zm) must be an integral. Finally,
one may state the'following theorem:

Theorem: Inside of (CO) the function F(Z) may assume the form

F(z) = o(2) + —L_— ¥(2) (1II.3)

with ¢(Z) and V¥(Z) admitting no singularities other than the poles

at A and A'.

The analysis we shall make will be simplified owing to certain
symmetry conditions which F(Z) satisfies. Let us put

W=w+ iw'

Obviously, X in w(X,Y) is even (when Y is constant).

Consequently, F(Z) has a real part zero on OY. Applying
Schwartz' principle one may write

F(2) = -F(-2) (III.k4)

This equation shows that knowledge of the development of F(Z)
around Z = a immediately entails knowledge of F(Z) around Z = -a.
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3.1.1.3 - Study of the case where F(Z) is uniform [ﬁ(z) = Q].-
Let us consider the function '

(a2 - Zz;<l - azzzz_JP

with p an integral and 2> 1.

(111.5)

ap(2) =

This function satisfies all conditions imposed on F(Z).

Indeed, it satisfies equation (III.4); inside of (CO) it does

not admit singularities other than a and -a which are poles of the
order py. Its real part is zero on the cut as well as on (CO), as

one can see when writing
i

A,(2) = F(ZZ +;_> (s au)zlp

ze

Finally, the origin should be double zero (at least).

Let us assume F(Z) to be the general solution of the problem
stated; we shall then demonstrate the following theorem:

Theorem: If F(Z) is uniform, one has

n . n szzp
F(z) = (z) =i (I11.6)
z XPAP ; Bag - Zz)(l - azzzilp

with n ©being an integral, and the XP being real coefficients.

In case F(Z) is assumed to be a solution of the problem having a
pole of the order n, one can determine a number A, so that

Fl(Z) = F(Z) - MAL(2)

will be a solution admitting the pole Z = a only of an order not
higher than (n - 1) at most. But in consequence of equation (III.k4),
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F1(Z) will allow of Z = -a as pole of, at most, the order (n - 1).
Proceeding by recurrence, one finally defines a function

Fp(2) = F(Z) - > A (2)
1

which must satisfy all conditions of the problem and be holomorphic
inside of (CO). The boundary conditions on the circle and on the cut

entail F,(Z) to be a constant which must be zero because F,(Z) must
become zero at the origin.

3.1.1.4 - Case where &(Z) = O0.- We shall study the case where
= 0 1in a perfectly analogous manner.

o(2)

Let us put

e2) - N2 = )G - &) o

Z

£(2Z) is a uniform function inside of (Co) which admits as poles only

the points (Z = -a, Z = a). Actually, the origin is not a pole since,
according to hypothesis, F(Z) is divisible by Z2. The function f£(Z)
possesses the following properties: It is imaginary on the cut, real

on (Co), and real on OY (which entails properties of symmetry if one

changes 7 to -Z). Moreover, f(Z) admits the origin as zero of, at
least, the order 1. All these properties appertain equally to the
funections

1z2P-1(72 _ 1)

Kaz - Zz) (l - azzzﬂp

(0 =157 - 3) -

P 1s an integral > 1.
Thus one deduces, as before, the theorem:

Theorem: In the case where ®(Z) = 0, one may write
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F(z) = 1 i Mp 2222 - 1) (111.7)
1

Kaz - 22)(1 - azzzﬂp+

with n Dbeing an integral, the Xp being real.

aVE

3.1.1.5 - The principle of "minimum singularities".- The for-
malas (IIT.6) and (III.7) depend on an arbitrary number of coefficients.
The only datum we know is the wgy, the value w assumes on the upper

edge of the cut. Thus we have to introduce a principle which will
guarantee the uniqueness of the solution of the problems we have set
ourselves. This principle which we shall call principle of the "minimum
singularities" may be formulated in the following manner (it is con-
stantly being employed in mathematical physics):

When the conditions of a problem require the introduction of func-
tions presenting singularities, one will, in a case of indeterminite-
ness, be satisfied with introducing the singularities of the lowest
possible order permitting a complete solution of the posed problem.

In the case which is of interest to us, this amounts to assuming
n =1 in the formulas (III.6) and (III.7). For the problem of interest
to us, this principle has immediate significance; it amounts to stating
that F(Z) and hence dW/dZ must be of an order lower than 2 in
l/Z - a, or W(Z) must be of an order lower than 1 with respect to that
same infinity; the considerations set forth in section 2.2.7 show that
these conditions entail the total energy to remain finite.

3.1.1.6 - Solution of the elementary symmetrical problem.- Let us
turn again to formula (III.6); one deduces from it, according to egua-
tion (III.2), that in the case where F(Z) is uniform

dW = g Zf -1
(a2 - 22)(1 - a272)

and hence

B 1 og (8 = 2)(1 - az) v
W(Ez) = ———x 1 (a + 2)(1 + az)
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The determination of the logarithm is just that the real part of W(Z)
is zero on (CO). Besides

Za(l +»a2)w0
n

xl=_
On the upper edge of the cut
W'—-WO

and on the lower edge w assumes the opposite value. Thls shows us that
the case investigated is that of the symmetrical problem. The value W(Z)
for this problem is therefore

w(z) = - 1:0 108[}: = ;ggi = zgg + Wg (111.8)

The calculation of the functions U(Z) and V(Z) offers no diffi-
culty whatsoever. It suffices to apply the relationships of compati-
bility (I.25) and to integrate; the only precaution to be taken consists
in choosing the constant of integration in such a manner that the real
parts of U and V on (CO) become zero; one then finds

_¥o (1 + a?) (a + 2)(1 - az)
v(z) = T (1 - 22) o8l Iz Ty + az) (111.9)
and
Zwoa ZZ _ az
- 1 III.10
u(z) ﬂB(l - az) o8 1 - alz2 ( )

This last formuls is the most interesting one since it permits calcula-
tion of the pressure coefficient (see formula (I.8)). One finds

e 2 2
C. = - 0 a log ac - X

P IR TP 1 - a2x2

(I11.11)
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In order to interpret this formula, one must connect the quanti-~
ties a, X, to geometrical quantities, related to the given cone. First
of all

a being the constant inclination of the cone on 0x. On the other
hand

2X r
=B — =8 tan w
1 + X2 X

whence

cos w - \J1 - Mzsinam
B sin w

X =

(see fig. 32) and

cos wq -\ﬁ.- Mzsinamo

- (111.12)
B sin wp

a8 =

In figure 33 one will find the curves giving the values of CP as
functions of w, for various Mach numbers and various values of wQ -

3.1.1.7 - Solution of the elementary lifting problem.- If one
starts from the formula (III.7), one obtains

(z2 - 1)?

Eaz - 22)(1 - azzz):’%

dw ;
= = i)
az 1

The integration which yields W(Z) introduces elliptic Ffunctions (see
section 3.1.1.8); on the other hand, it will (now) be possible to cal-
culate U(Z). We note beforehand that, according to the preceding for-
mula, W(Z) assumes the same value on the two edges of the cut and
that, consequently, this solution corresponds to the lifting problem.
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The relationships of compatibility show that

au _ M z(2? - 1)

P Eaz - 22 (1 - azzzﬂ%

and hence

u(z) = - e Z% + 1 (II1.13)

B(az + 1)2 Kaz _ 22) (l _ azzzﬂ%

We still have to calculate xl as a funection of LR For this

purpose, one may write

: M a7 = ing ' (22 - 1)%az

i T

We put in this integral Z = iu

2
l + U.z du = XlI(a)
l: + uz) l + azuz):]

The calculation of I(a) can be made with the aid of the function E
(see ref. 24). We shall put

c
+

g I-
I

ot o

After a few calculations one obtains

I(a) = 4

1 dt
3
\}l - t2 Eaz + (az - l)zt_zjz
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Finally, the change in variable

shows that if one puts

2

k=18

1 + a2
I 2oin? 1 1 - a°
I-= 1 - k®sin“® a9 = E 2
(a2 + l) (a2 +1) \1 + a2

Hence the new formula for U(Z)
aZWO Z2 + 1

(ITI.14)

=-2
u(z) 5

(a2 + 1>E(%-;—ZZ-\) Baz _22)(1 - azzzﬂ%

We still have to connect a and Z to the geometrical quantities.
One has (fig. 32)

2X

—28 __ - @ tan wg = B tan
1+ a2 1+ X2
One puts
t = tan®
tan wg

and obtains.

w0 tan W)

UB]\/
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and

20 tan wo 1
Cp =

-t o 'EE]l -‘thanzmo_] \]1 - t2

" if one puts, as usual

(I1I.15)

Wo=d.

If W is small, E[Jl - than%né] is close to 1, and the for-

mula (III.15), except for the notations, again gives a result found
before (formula (II.33)).

On the other hand, if B tan wg —>1

EBl - thanzu)o:l —)’-é—

and the formula (III.15) is written

Remark.

Thus one sees that the elliptic functions need not be used in an
essential manner in order to obtain the pressure coefficient. Actually
they appear only in the multiplicative coefficient. (In contrast,
Stewart, in his demonstration (ref. 10), makes essential use of the
elliptic functions.) However, these functions are indispensable in the
explicit calculation of W(Z) and V(Z).

3.1.1.8 - Calculation of W(Z) and V(Z).- There exist several
simple methods for calculating W(Z); the first consists in putting27

2TFor all the properties of the elliptic functions made use of in
this report, see for instance reference 24. In this paragraph, u will
be a complex variable and will have no relation to the velocity compo-
nent along O0xj.
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Z =a sn(u,az) (k = az) (111.16)

This transformation achieves the conformal representation of the
domain (D) on a strip of the plane u (see fig. 34); the values
written inside of small circles indicate the values of Z taken for
the corresponding value of u.

One has actually

sn 0 =0 sn K =1

sn i K') =i sc(g-'-,k'> = i =1
2 2 a

snK+_..iKl) =cd(iK'>= 1 =_:_L_=.];
2 2 a

Under these conditions

1 _1-28%| 1 1 a1 1
a2 1 + a2(z2 - a2 az(azzz - l) a’ dn?u cnu

whence

dn u cnou

iA L
W(u) = wy + —————Q;——E{g(az + l)u - 2E(u) +2snucnu, dnu sn %}
az(a2 + l)
(I11.17)

For determination of Ay, it suffices to write, for instance, that
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Now
; i) .
w(ﬂz{'> = 1 ZEaZ +1)i(1 +K') - ZE(—IK'H + Wy =0
az(az + l) 2
However,

ZE(}ZK—'> = iK' + 21 dn(%'-,k'> sc(%'—,k') - ZiE(KZL,k')

dn(-z—,k'> sc(%—,k') -1

ZE(g,k') - E(k',k') + K2

1+ k

whence the value of Xl

_ woaz(az + 1)2
a2K' + E(k')

M

This expression differs from the formula given for Ay in the

course of section 3.1.7; besides, one may, in a general manner, put the
_ g2
formula (III.17) in another form (using a modulus ky = l___ég which
1+ a

is different from the modulus k = a® utilized so far) by applying
the Landen transformation.

This transformation permits, in particular, establishment of the
following formula

EBl + k)u,kl:l = = }L kEE(u,k') + 2ku - k'%sn u cd {l

with the functions of the term at the right of the preceding equality
being relative to the modulus k' =\'l - 34.
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If one puts

e
i

iy

this formula is written

1l +k cny cn y dn

i 12
E‘El + k)iy,kl:l = —= E(l +k)y - 2E(y,k) + 2 dnysny  k'%sn .V:’
y

These last functions are relative to the modulus k = al.

However,
2dn y sn y _ k2 sny - sny '% dnzy _ k’%] _
cn y cnydny cn y dn y

ah snyeny dnysny
dn y cny

Y (Zen?y + anly) -
cnydny

If one now refers to the formula (III.17), one sees that it may
also be written

A
W(u) = v ;Ezgél:fzy E[gl + az)iu,ké]

and that under these conditions

<1 A
W(—lK > = WO - 1 EEl x k)K',k;| =0
2 a2(a2 + 1) 2

However, Kj = QA + KK is precisely such that
2

sn(Ki,kl) =1
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Consequently

A = woaz(a2 + l)
1 - az)

E___

1 + a2

which is, of course, the formula found previously. Hence

EBl + az)iu,kl:]

E(ky )

(111.18)

W(u) = Wo 1+

One may also proceed in another manner, introducing a variable
other than the variable u.

We put

The integration of % leads to

t

dt
3
o \/1 - 2 Eaz + (a2 - 1)2t2:|2

wit) = Y

Yo 1

We put

The complementary modulus is —2a

1l + az
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If one puts, therefore

t —cn('r,kl)
W( ) = Wn + f = W -
T 0 az N 1)3 - dnz 0
M (l - az) snTen T
k - E k +
az(az + l) ( l) (T l) (l + ag)z dn T

for Xl

woaz(az + 1)

)
1
1 - a2
E—
l+a,2

and

E<T kl) 1 - a2 2 1 nT T
w(T) = w, 5(i) (1 - a2> TE) SE 28 (III.19)

The formulas (III.18) and (III.19) are indicated for the calcula-
tion of W along the axis OY, whereas equation (III.17) is more suit-
able for the calculation of W along the axis O0X. We now turn to the
calculation of V(Z). The calculation with the aid of the variable u
is particularly simple. dV/dZ is calculated with the aid of the rela-
tionships of compatibility

Let us recall that
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and perform the change in variable (III.16). We obtain immediately

av _ wO(az + 1) 1 - atsntu
du E( kl) cnzu d_nZu

but V must be zero for u = 0. The integration of dV/du then gives

2
Wo(a + 1) sn_u (II1.20)

V() = E(kl) enu dn u

We verify, for instance, that for 2 = i, V has a real part zero,

Z =1 corresponds to u = =—
snfikl) = 1
2 a

cn(i;;) _ nc(ﬁz'—,k) - L+x

dn(i—g-'-) - dc(%,k') = k(1 + k) (x = a2)

One can state that 'VG%?) is purely imaginary. We shall not give

another formula for the calculation of V(Z); the formula (III.20) which
is particularly simple (it does not make use of the function E) permits
the calculation of v on the axis O0OX; on the other hand, v is zero
on OY.

3.1.2 - Study of the Case Where the Cut is Not

Symmetrical With Respect to OY

3.1.2.1 - General Principle.- The case where the cone investigated
does not admit the plane Oxl,x3 as the symmetry plane is easily led

back to the preceding by a conformal representation, maintaining the
cirele (CO).
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Let us suppose, for instance, that in the plane Z the obstacle
is represented by a cut along the segment (b,c) of the real axis (see
fig. 35); the conformal transformation

2 -
Zy = —L (I11.21)
1l - Cl.lZ
where a7 1is a real number (Iall < l) maintains definitely the real
axis and the circle (CO). We shall attempt to determine the numbers ay
and oy 1in such a manner that Z = c¢ corresponds to 7y =aj, Z =D

to Zl = -a7. One must write
cC - b -«
- e - ayb

ay is determined by the equation

c - b -
o ,P-o
l—G,lC l-d,lb

which gives

(we note that, if b +c¢ =0, a =0).

One will then determine aj by one of the two formulas described
above or by the formula symmetrical with respect to b and ¢

) J1 - b2 - \1 - 2 =bc-1+\](1-b2)(1-c2)

a1 b c
le - c2 + ch - b2

a relationship which one may find directly by writing

(l:‘l:al:'a]_) = (1,-1,c,b)
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In particular

1~ aq2 _ \kl - bz)(l - cz)
2 1l - Dbe

l+al

3.1.2.2 - Symmetrical problem.- It will now be very easy for us to
study the case of the symmetrical problem (that is, the case where w
assumes the value wgy on the upper edge, and the value -wy on the

lower edge of the cut).

The formula which gives W as a function of Z; is written (for-
mula (III.8))

iw, 87 = Z4 1 - a7
W(z) = - -59 log| =1 i
al + Zl 1 + a.lZl
whence
iw,
w(z) = - —ﬁ—ol:loch - zZ)(1 - ZcZI - long -z2)( - Zbﬂ] + Wy

(111.22)

v(Z) and U(Z) are obtained by the compatibility formulas

v - - ¥ (22 +2) (b - ¢)(@ - be)

dz T (c - 2Z)(1 - 2e)(Z - v)(1 - Zb)
whence
v(z) = - EQELJLEE.lOg c-2 _1+v8,2- b:}
Tl - B 1-2¢c 49 _p2 1 - 7b
Finally
au _ 2vg (b - ¢)(1 - be)z

dz = B (c - 2)(1 - Ze)(Z - b)(T - Zb)
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whence

ZWO
u(z) = [ 1 C-Z_ b 1 Z -Db .
(z) = — ) 1Tz ] o2 21-vbZ (I11.23)

Naturally, one could have obtained these expressions directly, by
a reasoning analogous to the one made before in the sections above

(3.1.%, 3.1.5, 3.1.6).

We remark that this problem possesses a property of "additivity"
which is, besides, evident from the outset but is entirely obvious in
the formulas (III.21), (III.22), (III.23). This means that, if one
knows the solution.of the problem for a segment be and the one rela-
tive to a segment cd, one obtains the solution relative to the seg-
ment bd by adding the given solutions. Also, we point out that in
the preceding formulas the manner of determination of the logarithms
should be conveniently chosen.

3.1.2.3 - Lifting problem.- We shall be satisfied with the calcu-
lation of the function U(Z). Let us put in this paragraph

_1-8% J@ - 12) (1 - cB)

S, a,? 1 - be

One has

aw_ 1wgm 8 (a1 + 1) (22 - 1)

dZy E (k) 3

K;lz _ le)(l _ alZZIZEJZ
azy 1 - ay 2

whence one obtains very easily
av 2o 82(1 +aB)(a + e)3(2 - )3 z(z2 - 1)

au _ Z ,
dz  pE(ky) (1 +21) [Ec - 2)(2 - b)(1 - b2)(1 - CZ) %
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The equality

)
(b:i;c,:L) = ('a]_;" ;'_lJalJl>

is written

PoC-Db _ Zal
i- be 1 + alZ
(F + 1)3

and if one forms the combination , one may deduce from it the

F2
identity

(1+e)30 -3 _ (2 +a)f
(¢ - ©)2(1 - be) Malz<l + alz)

which permits one to write

z(z2 - 1)

3
Ec-zﬂz - )1 - bzZ)(1 —cZﬂZ

s18)

__" 2
az ZBE(kl)(b - @)1 - ve)

The integration is easily made, with the aid of the elementary functions

u(z) = afo) ZbC(ZZ + l) - (b +e)(1 + be)z

(T1I.24)
BE(ka ) - P) o - 2)(z - 0)(1 - v2) (1 - c2)

3.1.2.4 - Lift of a delta wing.- The total energy on an obstacle
will be obtained, in a general manner, by integration of the pressures.
However, the 1lift may be calculated by means of a very simple general
formula which we shall set up.

We shall start from the formula

Cp = -ZBEJ(zﬂ
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Let us consider an elementary triangle OMM' (see fig. 36), with
B dxy

M having the coordinates (B,x2,0>; its area is equal to . One

has, by definition of C,

-zf C, axgp
M 2

M
C, = Mz

D, 2
M

1M

which in the plane 2z 1is written

In 2z, » and p are the images of the limiting generatrices of the
obstacle, L is the loop surrounding the cut (A,H). If one denotes

by (L)‘ the loop surrounding the corresponding cut bc in the plane 32,
one has, since

X = —20 (z = X + 1Y)

4R \/p u(z) 1 -72 az| = -4R L/p U(z) L= za az
L (1 +27)? Co' (1 + z2)2

with (Co') denoting the circle of the radius 1, modified in the neigh-

borhood of i and -1 by two small ares 11', mm', in order to avoid
the singular points (see fig. 37); the arrows indicate the direction of
the course. Along the circle (CO), (Z = ele)
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l-Zz dZ:_ZisinGid9=sin6 a6
(1 + Zz)z 4 cos?o 2 cos?0
and since
sloce] - o

one deduces that the integral is zero along the arcs 1'm', ml; the
points Z = *i are double poles of the quantity that must be integrated;
but one can easily see that the integral remains finite along the cir-
cular arce 11' and m'm. Exactly speaking: if one denotes by R;

and R_; the remainders of the function

U(z).;L;;ZE__

(1 + 22)F
at the points Z =1 and Z = -i, one has, since
Lo = B¢ 2o . 2(c -Dp)(1 - be)

1+c2 1-v2 (1+02)(1 +c?)

C, = +2 (1408 + c?) BEﬂ(Ri + R_i):|

(¢ - b)(1 - be)

However,

whence

(1 + 621 + <2) rlildU

au
(¢ -b)(Q - Dbe) — az(zzi) + e (II1.25)

EE‘(z=-i)
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One can also express C, as a function of the values of aw/dz
at the points i and -i

Cy = 21 + 02)(1 + c?) R|i|¥ - (III.26)
Ble - b)(1 - be) A2(z=1)  4Z(z=-1)

One may finally remark that

aw _ s D
2 S(0s1)
whence
_ n(l + bz)(l + cz) ow dw
2= 8(ec ~ D) (L - be) E§(0:+l) - Sf(o’—l) (III.27)

We shall apply this result to the case of the lifting delta wing
studied in section 3.1.2.3:

au _ . _ ¥ (b - ¢)2(1 - be)

dZ(Z:i) N BE(kl) Bl + bz)(l + cZ?_J%

whence

C. = - ¢ - b

= O ST

with ky being equal to

A

1l - be

In the wing theory, one designates the incidence by 1i; with the
usual notations one has here
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The desired formula C,(i) is

Cy = 2“; c - b (II1.28)
BE( l) Vkl + bz)(l + cz)

In the case where b = -a, ¢ = a, one finds

C, = Ynad
(1 + a?)E(ky )

or again with the ndtations of figure 32

2n tan
Cy, = &0 i (111.29)

E<Jl - thanzwo)

A few applications of this formula may be found in figure 38.

If wg is small, one will find again the result obtained in sec-
tion 2.2.4 (except for the notations)

C = Zﬂ(l)ol

2

3.1.3.1 - Study of the general case.- So far, we have treated only
the elementary cases, that is, those for which the function w assumed
a constant value on each edge of the cut. We shall now treat the case
where the function w assumes on the upper edge of the cut prescribed
values

w = wy (X)

and on the lower edge prescribed values which we shall note

w o= WZ(X)
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Let us note, first of all, that the solution of the general prob-
lem may always be considered as the result of superposition of the solu-
tions of a purely lifting problem (with w assuming the same value

2

on each edge of the cut) and of a purely symmetrical

_+W1(x) - Wg(x)
- 2
edges of the cut). Thus we shall be able to limit ourselves to these
two types of problems. We shall note, in addition, that in the purely
symmetrical problem u assumes the same values on the two edges of the
cut, whereas it assumes, in contrast, opposite values in the case of a
pure lifting problem.

on the two

problem.(with w assuming opposite values

A first idea for the treatment of this problem consists in utilizing
the elementary solutions found before and in superposing them conven-
iently. Let us consider, for instance, for a symmetrical problem, an
alementary wing of infinitely small span, the image of which in the
plane Z 1is a segment of the real axis of the length AX, situated in
the neighborhood of the point X, and let us assume w = w(X) to be the
value corresponding to w; the complex velocities of this flow are given
by the formulas (III.21), (III.22), (III.23); using the hypotheses made,
on? may write, designating the complex velocities by AU(Z), aV(Z),
oW(Z),

mi(z) = - ) 4 oax - z)@ - ZXZIAX
b1¢ dX__
[1 . x2 -
Av(z)=-‘“'(X)ad§(-l+x2 10g)l( ;’XAX
h18 _l - X -
AU(Z) = 2w(X) 4| X log X -2 |nx
T[B ax 1 - X2 1 - 272X

One arrives at writing the solution of the symmetrical problem in
the form
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. c B
w(z) = - l}/\ w(t) S |10g(t - 2)(2 - ZEE]dE
tJy dag N
,1 ¢ all - e2 £ zr
v(z) = - ;L/; W(E)EE e log == 7E at » (III.30)
- 2 d __E £ - 2
w@ - & [ wnd e =Ll

The integrals occurring in these formulas make sense only if 2Z 1is not
on the segment be. If 2 1is real and comprised between b and e,
one has to take the "principal value" of these integrals. Furthermore,
one must demonstrate, in order to justify these formulas, that the real
part of the function W(Z), defined by the first formula (III.30), actu-
ally assumes the value w(X) when Z is real (2 = X).

For this purpose, one calculates W(Z) in a point of Z = X + iny
(with 7 being positive and small) by dividing the integral appearing
in the first formula (III.30) into three parts

. X-¢ c X+e
Wz =-2 [ [T ]
Yo X X-

+e €

After this has been done, one chooses ¢ and 7 in such a manner that
the last integral is arbitrarily close to the value

X+¢€

I = w(X) at
X"'G g"Z

which is possible since this integral may be written

fm W)y - 22)? .,

x-c (& -2)(1 - &2)
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One may then, diminishing as necessary the upper limit fixed for 1,
choose that last number so that

X-¢ c
al -3 [T+ [
n b X-€

should be arbitrarily small. There is no difficulty whatsoever since
the guantity under the sign Jf is continued in Z. Finally, I may be

made arbitrarily close to
inw(x)

which shows that, if 71 1is sufficiently small
rlW(z)] - w(0)

is arbitrarily small which had to be demonstrated.

This procedure, while theoretically simple, is rather delicate in
practice since the calculations to be made affect the integrals, the
principal value of which has to be taken. In the lifting case, on the
other hand, the application of this method would require previous solu-
tion of an integral equation of a rather complicated type. TFor that
reason we prefer to give the following calculation methods; the first
utilizes the "electric analogies;" the second which is purely numerical
will reduce the numerical calculation to that of a Poisson integral; in
section 2.2.7 we have given a simple and accurate procedure for solving

such a problem.

3.1.3.2 - Utilization of the "electric analogies"28.- The analogy
consists in identifying the harmonic function w{X,Y) with an electric
potential @(X,Y), through a conductor constituted by a liquid occupying
a tank with horizontal bottom of half-circular shape (see fig. 39). On
the circular boundary w 1is constant; consequently, the semicircumference
will be brought to a constant potential; 1t will be possible to regard
that potential as the zero of the scale of pctentials. This circumfer-
ence will, therefore, be conducting; (this half-circle is nothing else
but the part of the circle (CO) of the plane Z for which Y > 0).

28For all questions concerning electric analogy, see the fundamental
memoranda by M. Malavard (refs. 25 and 26).
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On the cut be which represents the conical obstacle, one distributes
electrodes which will be brought, by means of adjustable potentiometers,
to the given potential ®. For specification of the boundary condi-
tions on the segments A'b and .cA, one must distinguish between the
symmetrical and the lifting problem.

3.1.3.2.1 - Symmetrical problem.- w must be zero on the portions
of the axis outside of the cut; consequently, the corresponding bound-
aries of the tank are brought to the potential zero, that is, to the
same potential as the semicircumference A'BA; w is given directly
by a pure Dirichlet problem. However, the unknown of our problem is
the value of the pressure along the segment he, that is, u.

u 1is connected with w by the relationships of compatibility
which permit one to.write on the axis of the X

P _ 2K u
X T ] _ 42 oY

with BW/BY being proportional to the intensity entering the tank
through the electrodes; this quantity is easily measured with the aid

of a convenient arrangementzg. With the value of Bu/BX thus known,
we must, in order to obtain the desired pressure distribution, determine,
in addition, a value of u along bc, for instance the one at the

point 039, On the axis OY one may write

29%ne may, for instance, feed the electrodes of the cut through
resistances R, insuring a drop of the potential from ¥ to ¢ (see
fig. 39). Under these conditions, one has a relation of the form

%% - k(X)@ - @)

with k(X) being a function which depends on the chosen resistances
and on the resistivity of the tank, but can always easily be obtained;
the manipulation to be performed is then as follows: after the resist-
ances R have been determined, one has to choose the values of @ in
order to obtain at the electrodes the values of ¢ prescribed by the
boundary conditions.

30We shall assume the point O +to lie on the cut. 1In the opposite
case the procedure indicated here may be very easily modified.
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Since u(X,Y) is zero at the point B(0,1),

1 1
pu(0) = —2t V(g t)ar = |—BL_ w(0,8)| -
o 1+t209 1+ Y2 o

1 2
zk/1 w(o{t)_l_:_ﬁ___ dat
0 (1 +12)2

Hence

1
pu(0) = -zl/p w(o,t)-l;:—ﬁf-— at (111.31)
0 (1 + t2)2

One will know u(0) by means of a simple integral if one knows the
distribution of the w (the same as that of the ®) on the axis OY.
Since this may very easily be determined, the problem is entirely solved.

3.1.3.2.2 - Lifting problem.- The boundary conditions to be realized
for the lifting problem are the same as for the symmetrical problem as
far as the semicircumference A'BA and the cut b,c are concerned.
On the segments A'b and cA one must, of course, write

dw _ dw 0

dY dn
that is, the corresponding walls will be insulating walls.

However, this 1s not sufficient. If no precaution is taken, the
harmonic function corresponding to the electric field thus realized will
not be a solution of the aerodynamic problem posed. Actually, there is
no reason whatsoever why the gradient of this potenlial should be zero
at the points A and A', since the intensity at A and A' 1is, in
general, not zero. §Since the corresponding function dW/dZ is not zero
at Z = %1, we have already pointed out that this leads to singularities
inadmissible for U(Z) (see section 3.1.1.1).
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The investigation of the elementary lifting problem, admitting OY
as symmetry axis, will permit us to better understand the difficulty,
and to solve it. If one realizes in the tank the preceding boundary
conditions by bringing the electrodes from the cut (-a,+a) to a con-

‘stant potential, it is quite obvious that the potential thus realized

in the tank will remain finite at every point of the field, even at A
and A'. Thus one obtains a solution by taking for ®(X,Y) the real
part of the analytic function F(Z), defined by

_ i
(a2 - 22) (1 - 2227)| ¥

R

with A being a real constant.

This solution does not correspond to the solution of the aerodynamic
problem (see section 3.1.7) which, in contrast, gives a singularity

2 oy -1/2 ) . .
at (a - Z ) for the function W(Z), in the neighborhood of Z = a.
As a consequence, w(X,Y) must be infinitely large at points close to

+a and -a3l. This particularity must, therefore, be taken into account
in the circuit.

It is not the first time one encounters problems of analogy with

singularities32. One knows that one must then realize in the neighbor-
hood of the points +a, a material model, partly conducting, partly
insulating, which schematizes the arrangement of an equipotential elec-
tric line and a current line.

31One encounters there an interesting example of precautions to be
taken in a given problem when one applies the principle of minimum sin-
gularities. This principle has led us to pose, for our aerodynamic
. . 2 2)'3/2 .
problem, a solution for dW/dZ in (a - Z . But if one makes
the analogy, the electric tank has no reason to "know," a priori, that
realization of other conditions than those directly concerning W(Z)
is desired. Thus it "applies" the principle of minimum singularities,
-1/2
realizing the solution for dW/az in (a2 - z2) /2,
32See for instance references 27 and 28. For several months, the
laboratory of electric analogies of the O0.N.E.R.A. has been utilizing
singularities for the study of compressible subsonic flows in the hodo-
graph plane.
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In the case of interest to us, in the neighborhood of the
point X = +a, one has

_K
Z ~ a

W(z) =

with K being a real constant; consequently, if one puts

W(z) = w(X,Y) + iw'(X,Y)

7 -a = =gelo
and
w+ iw' = X cos £ - i sin &
JE 2 2

the lines w = constant are determined by

so(l + cos o)

2a
5 = 8 CO8° = =
0 2
and the lines w' = constant by
s, (1 - cos o)
s = 87 sin® & = -1
2 2

sg and s3 being two positive constants. They are, therefore, cardi-

oids; their arrangement is given by figure 40. Also, one finds in this
figure the scheme of the singularity which must be placed at b and c.
Thus the manipulation is as follows: after the circumference ABA' has
oeen brought to the potential zero and the boundary conditions have been
realized along the cut be, one brings the conductive part of the two
singularities to rather high potentials which must be determined so that
the intensity at the points A and A' is zero (of course, if the
problem presents the axis OY as symmetry axis, the two singularities
must be brought to the same potential, and the nullity of the intensity
at A will insure that of the intensity at A'). This one will realize,
from the practical point of view, by detaching at A (and eventually
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at A') on the semicircumference a small electrode which will not be
fed and the potential of which will be made opposite to the potentisl
of the rest of the circumference, through a zero apparatus. It is this
condition which permits determination of the potential to which the
conductive part of the singularity at c¢ (and eventually at b) must
be brought. The field ®(X,Y) realized in the tank will then, in con-
sequence of the principle of "minimum singularities,” be proportional
to the field w(X,Y) of the velocity component following Ox3.

After that, the manipulation unfolds as for the symmetrical case.
One measures the intensities along the cut (b,c) which furnishes the
values du/dX. One determines the value of u at the point O Dby
restoring the field of values of w along OY and by applying the
formula (III.31).

3.1.3.2.3 - Electric measurement of C, in the case of the lifting

problem.- In all cases, the total energy can be determined by integra-
tion. In the case of the lifting problem, one will yet have a supple-
mentary verification by utilizing the formula (III.27) which we shall
write

¢, - 2 (1 +p2)(1 + c2) du(o.1)

B (c -b)(L -cb) oY

Actually, this last formula permits to obtain directly the C,, by

a simple electric measurement which gives the intensity entering at the
point B, since dw/dY(O,l) is proportional to that intensity. For
this purpose, it suffices to detach, in the neighborhood of B, a small
electrode (fig. 41) and to feed it by the intermediary of an arbitrary
resistance R. With all boundary conditions satisfied, it suffices to
regulate © to make the potential at B zero as on the rest Jf the

semicircle. C, is then proportional to ®.

2

3.1.3.2.4 - Applications.- The scheme of the circuit used is given
by figure 39. We do not intend to give here the details of operation,
the precautions taken for increasing the accuracy, the determination of
the scales, and the reduction of experiments. All this will form the
subject of a later report.

Here we shall give simply the results of the first experiments
made following these principles33. In every case studied, we have

33There is every reason to assume that the satisfactory precision
obtained could be further improved by employing a more suitable material
than the one that was utilized. These tests were made frequently with
utilization of chance setups with the material that happened to be at
the laboratory.




treated the elementary lifting case and the elementary symmetrical case which permits a veri-

i

pressure coefficient by Cp

cation of the procedure.

1) Elementary symmetrical problem. a = 0.6, wn = 1l.- Let us designate the corresponding
0

O:

X O |0.06 |0.12 |0.18 |0.24 [0.30 [0.36 |0.k2 |0.48 | 0.54 |0.585
Cp 1.204k{1.21411.248]1.306f1.400|1.518 | 1.692}|1.946 | 2.340| 3.140] 5.160
Oexperimental
C 1.21911.230| 1.26211.318 | 1.502{1.524 | 1.694 | 1.946 | 2.336 | 3.072 | L.6kO
POtheoretical

(2) Symmetrical problem:

case of a lenticular cone.- If the section x; = of the coni-

cal obstacle given is formed by two parabolic arcs

wi

X3 = iéo(kz - xzz)

th €, being a positive small number (see fig. 42), the function w(X,Y) will assume on the

cut the values

Le

t us recall that

HTIT

HGET WI VOVN



One may write the pressure coefficient

Cpl = GOPl(X)

#SET WL VOVN

The results found have given, for a = 0.6

X o lo.06 |0.12 |0.18 |o.24 [0.30 |0.36 | 0.42- | 0.48 | 0.54 |0.585 i

Pl(X) 1.111}1.112}1.117|21.133{1.181|1.285] 1.491}| 1.849| 2.472 | 3.778 | 8.02

For verification, one has studied also the case where the distribution of w along the
axis of the X was given by

The values found for the corresponding Cp were as follows; one has put

Cp = €oPo (X)

X 0 0.06 |0.12 {0.18 {0.24 |0.30 {0.36 }0.42 [0.48 |0.54 | 0.585

Po(X) | 0.77710.793 | 0.843 ] 0.917 [ 1.204 [ 1.088 | 1.157 [ 1.195 | 1.183 | 1.099 | 0.934

GTT



—
.

Ol

Naturally, one must verify that Pj(X) + Pp(X) and 2k2(0p0>

has

assume

the same values.

Now one

X

0.06

0.12 } O.

18 | 0.2k

0.30

0.36

0.42

0.48

0.5k

0.585

P1+P2

1.887

1.905

1.961) 2

.050 | 2.185

2.373| 2.648

3.043

3.655

L.877

8.96

2
2k CPO

1.899

1.915

1.965| 2

.052 | 2.183

2.373| 2.638

3.030

3.637

L.783

7.23

(3) Elementary lifting problem

X

0.06 | 0.

12 10.18

0.2k

0.30

0.36

0.42

0.48

0.54

C

Pexperimental

1.196

1.208 1.

242 ] 1.304

1.398]1.536

1.742

2.062

2.536

3.776

Cp .
theoretical

1.192

1.20k | 1.

238 1 1.298

1.390 | 1.526

1.724

2.030

2.052

3.732

(4) Lifting problem:

parabolic

cone.- w = eo(k2 + xz); one will put CP3 =

60P3(X)

0.06

0.12

0.18

0.24

0.30

0.36

0.k2

0.48

0.5k

P3(X)

1.068

1.070

1.07h

1.094

1.152

1.278

1.520

1.956

2.732

4.636

HSET WL VOVN
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3.1.3.3 - Purely numerical methods. Utilization of the plane z.-
We have introduced this plane in section (1.2.5). Let us recall that
z corresponds to Z by the conformal transformation

22

7, = g
72 + 1

and that in this plane the relations of compatibility are written

-B AU = z dV = —=3iZ__ aw (III.26)

One of the advantages of the plane which is of practical interest
is that one has on the real axis (if z = x + iy)

X=X2

Xo Dbeing the ordinate of a point of the section x; = B, situated on
X3 = 0, in the axis system Oxlx2x3.

Some of the formulas established before may be written more simply.
If one denotes, for instance, the image of the cut (b,c) of the
plane Z in 2z by (A,u), the formula (III.21) is written

W,
W(z) = -i 2 10g L= 2 (1I1.32)
7 A -2z

W(z) thus appears as the complex potential due to two vortices placed
at the points A and u and of opposite intensity. Likewise, the
formula (III.24) may be written

Vo (L + ) (1 + c2) 2ap - z(n + 1)

(111.33)
BE(kl) 1 - be \k“-" 2)(z - %)

U(z) =

If one puts

A =cos ¥ pL = cos w
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¥ and w lying between O and =

K, = QSin ¥ sin w and \ki + bz)(l + cz) 1
1=
sin Y+ 1 - be sin Y+ o
2 2
In the case where [ = -\ = k, one has, in particular

__2K2

Cp = Y0
N O

Iet us recall that

E'(k) = E(Jl——}?)

3.1.3.3.1 - Case of the symmetrical problem.- Let us now assume
that the problem corresponding to the boundary conditions w = f(x) on
the upper edge of the cut, w = -f(x) on the lower edge has to be
solved. The formula (III.32) leads us to represent W(z) as the poten-
tial of a distribution of vortices carried by the segment Ap; conse-
quently

24 u -z

W(iz) = - EL[;H W gy

At a point of the upper edge of the cut, one has actually

W(x) = - %1/;“ gi%lgg + £(x) = w+ iw’

with the integral taken at principal value.

Let us put on the cut

X = A ; By B =X o5 0 u =X

By B= ) cos 6
2

N |+

f(u) = F(6)
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Let us assume, to begin with, that

. F(0) =F(x) =0

and that F(6) can be developed in a Fouriler series

0

F(9)=§ A, sin né 0<6<mn

0]
Then
b1 00
<§ An sin ne)sin 2]
wi(e) = - L 0 de
b4 cos @ - cos @

We shall furthermore admit that the signs E and u/ﬁ are inter-

changeable. According to a known result (ref. 13)

7T b1
- ;f sin n® sin 0 d0 _ _ Lf Eos(n - 1)6 - cos(n + 1)6]
0 0

— ae =
L cos O - cos @ 21 cos 68 - cos @

[;in(n - 1)9 - sin(n + l)@]
2 8in @ '

=cosn®

and consequently

[+ o}

w' () = :E: Aycosn®
0

Thus one sees that w'(6) is the conjugate function of F(6) which
could have been easily established by other methods as well.



120 NACA T 135k

However, according to the relation of compatibility

and

We shall put
n
G(?) = - > Ay sin n? (III.3h)
0

G(®) 1is the derivative of the conjugate function of F(¢). Thus one
has

du _ xG(P) (III.35)

* BJl - x2

Knowledge of F(?) entails that of G(?) by a calculation of

du
P°
In order to set up formula (III.35), we have made a certain number of
hypotheses. These hypotheses will be satisfied if the derivative of F
with respect to ¢ satisfies a condition of Cauchy-Lipschitz.

trigonometric operator (section 2.3.3) and, consequently, that of

In order to calculate the pressure at every point of the cone one
must integrate the formula (III.35); for that, however, one must know
the integration constant.

The exact determination of the function u will be easily obtained
as soon as we have studied thoroughly the character of the function U(z).
We suppose first

A=

In order to study the function U, we shall perform the conformal
transformation of the plane 2z, provided with cuts (-ew,-1), (-p,+n),



NACA ™ 1354 121

(1,+©) traced on the real axis, on an annular corona. This is imme-
diate (see, for instance, section 3.1.7.1). Let z7 first be a complex

variable defined by

le 1

N T

or

Z = sn(zl,p), (kx = p), then

The plane 2z ©provided with its cuts then is represented on a
strip 0< E(zl) < K' of the plane 27, and on an annular area of the

plane zg (see fig. 43) bounded by the circumferences (71) of the
radius 1 and (72) of the radius

In the plane z,, U 1s of the form
U(Zz) = A log Zz + f(Zz)

with f(zz) being a uniform holomorphic function inside of the annulus
(see for instance section 2.1.2.1), since U(zz) is finite, even at
the image points of 2z = +u, because of the hypothesis

F(0) =F(x) =0
We remark that f(zz) has a real part zero on the circle (71).

We assume the value of the coefficient A to be known; on the circum-
Terence (71), A log z; maintains as constant real part
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;S (III.36)

A log q = - EE

e

According to a well-known theorem of the theory of harmonic func-
tions (see ref. 29) one now knows that, if a uniform harmoniec func-
tion H(x,y), defined inside of a circular annulus, assumes on the two
limiting circles the values ®,(6) and @®,(8), (with 6 bveing the

angle at the center representing the running point on each circle), one

has
27 2n
f Po(0)ds = f ?4(0)ae
0 0

This theorem will allow us to demonstrate the following theorem:

Theorem: If u = -A, the function u(®) satisfies the equality

P11
u(®)ap

0 Jl - nlcosdP

K(u) being the elliptic function of first kind relative to the modulus

= 2K(U1)A log q

7
f &
0 Jl - pzcosz@

In fact, the mean value of the real part of f(zz) on the
circle (71) must be zero, but the mean value of u on (72) reads

K(u) =

a3, LK

el B Tl “dzlﬁ—xf“ -
0 2 0 L J(uz - Zz) (l = Zz)

with L designating the loop surrounding the cut (-u,+u) in the posi-
tive direction. However, the function u(®) assumes the same values at
points which have the same abscissa on the upper and on the lower edge
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of the cut; consequently, this mean value is equal to

P
1 u(®)av

2K ’
0 1l - MZCOSZCP

In order to have a mean value of f(z) on (72) of zero, it is

necessary and sufficient that the mean velue of u should be equal to
A log q which justifies the theorem. One utilizes this theorem in the
following manner:

If up(®) is & primitive of au, calculated by the formula (III.35),

and if

Lf uolelde  _
2K 0 Jl - p2c052@
the desired value of u(®P) may be written

u(®) = A log q + uy(®) - C

To establish this result, we have assumed that the cut is extended
on the segment (-u,+u), symmetrical with respect to the origin. In
order to reduce the general case to this particular case, it suffices
to make a conformal representation, analogous to the one already made
in section 3.1.2. ILet

z! = 2 = &

1l - az

be this conformal representation which makes the cut (-k,+k) of the
plane z' correspond to the cut (x,u) of the plane 2z. One has, in
particular

_1-ow -\ - - wB)
B =-A

k
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The mean value of u on the image circle of the cut (-k,+k) of the
plane z', in the conformal representation which transforms the plane z'
into a ring, reads, according to what we have just learned

u dz'

hK(k)f \f '2 (l - z;z)

with L' designating the loop surrounding the cut (-k,+k) in the
plane z'.

However
dz' = dz(l - a?)
(1 - a,z)2
2
\l(kz -2‘2)(l—z‘z> = 1 - of 1-c (1-22)(u-z)(z—x)

(1 - az)? \ﬁl - a)(1 - au)

We remark that

(L - )@ - o) _ fu-n

The mean value is then written

d/q u dz
I
K(k)\l - @)@ - 26 -0

L Dbeing the loop surrounding the cut (X,p) in positive direction.

If we finally put

cos P

N . A
2 2
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the desired mean wvalue on the upper edge of the cut is written

o Jmf“u@)dw
2K(k) \] 2k o \]l_—zg

As previously, one draws the conclusion:

If ug(®P) is a primitive calculated from equation (III.35), and if

1 ’u-xfu(@)d@ - C
2K(k) \| 2k o Jz—rjgf

the desired value of u(®) is

u(®) = uy(?) + A log g - C (111.37)

Thus the entire matter amounts to calculating the constant A.
This constant is calculated very easily if one considers the imaginary
part u'(x,y) of U(z).

In fact:

When, in the plane 2z, one circles once in the positive direction
of the cut (A,p), the imaginary part of U(z) increases by -2zmA. If
one circles the cut by the loop L, one notices that u'(x,y) assumes
opposite values at the two points of the cut which have the same abscissa
but are situated on different edges. Thus one may write

=1/ oul
A “L/X S% dx

However, according to the relations of compatibility, one may also write

(111.38)

A= QLle“ X oW gy
i T
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which permits directly the calculation of A, (starting) from the function
w = £(x)

given on the cut.

The entire analysis above assumes that f£(x) becomes zero for
X=X and X = H. We now still have to reduce the general case to this
particular case. One may put

f(x) = fo(x) + Cy + Cyx

with fo(x) becoming zero for x = A and X = y, and Cy and Cy

being two suitably selected constants. The problem then may be reduced
to the superposition of three problems, the first where

w(x) = fo(x)
the second where

w(x) = Cq
the third where

w(x) = Cyx

Since the two first problems already have been dealt with, we now
only have to treat the last problem. Thus we put

f(x) = x

and seek the function U(z)
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hence
dw _ i R -2 i A
—_— = - = Jog b= - = - A
dz e n:(u )G-z)()\.-z)

and according to equation (I.26)

(b - M)z

du 1 4 -z
= — ————\log +
nB l-zzl: A~z (u-z)(x-z)J

whence by integration (determining the integration constant so that

should have a real part zero)

U(1)
1l - pz + \/(l - 22)(1 - uz)

u(z) = - -l—\Jl - zzlog H =z 4 1 log
BT[ X—Z 1 uz “—Z

1 g lote \gl - 22)(1 - %)
-2

\h.- A2
In order to calculate numerically the pressures in a

Summing up:
symmetrical problem, one has to perform the following operations:
=\

(1) One turns to the case where w(x) becomes zero for x

and x = u, following the method just exposed.
A (formula (III.38)) and q (for-

(III.39)

(2) Calculate the constants
mula (III.36)).
(3) Calculate the function G(®) for a trigonometric operator.

(4) Calculate g% (formula (III.35)) and a primitive Ugy(®).

(5) Calculate

7C
c._1 L/q uo(¢)d¢
2K
(1) 0 \’l - pzcosch

u(®) 1is then given by the formula (III.3T7).
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Example: In applying this method to the calculation of the case
of the parabolic cone where

W= teo(kz + x2) Cp = egpy (P)

one has found the following distribution of the CP

¢]

®

15

30°

45°

60°

75°

900

p,(®)

6.840

2.535

1.524

1.196

1.102

1.088

In order to compare this with the results of the electric analogy,
one must recall that

X:..—z.x__..
1+ X8
The comparison is given by the figure Lk.

3.1.3.3.2 - Study of the lifting problem.- For simplification, we
shall 1imit ourselves to the case where the problem admits the
plane Oxlx3 as symmetry plane.

Let us consider the function W(z); one may put it in the form

W(z) = AWy(z) + F(z)

Wo(z) being the solution in W of the elementary lifting problem (for
which wgp = 1), A being a real constant and F(z)

remains finite in the domain where W(z)
along the cut

a function which

is defined. We shall put

F(z) = £(x) + if'(x)

Let us put likewise

U(z) = AUG(z) + G(z)

being the value of U(z)

G(z) corresponding to the case where
W(z) = F(z).
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We shall designate the real and imaginary parts of the function G(z)
on the cut by g(x) and g'(x).

If one notes that along the cut

of _ ow

dx ox
one sees that the relations of compatibility permit one to write

g _ og' _ X df _ x w

oy dx 5 Ox 3 5 Ox

w(x) 1is the function given by hypothesis; hence

og' _ X oW

ax Bl_xzax

If we assume. ow to be limited, one may visualize the development

ox

in trigonometric series of dg'/d® in the form

LY b
T A, sin n® (I1II.%0)

Now G(z) may be visualized as the potential of a vortex distribu-
tion carried by the cut (in particular, the real part of U(z) is zero
on the real axis outside of the cut).

Let us consider a vortex distribution of the intensity

g(®) = EE: B, sin n®

The value of dg'/dP will be identical to the one written in the
formula (III.40), if, and only if
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as it results from very simple calculations, already carried out in the
preceding paragraph.

Hence one then deduces the value of g(?) corresponding to dg'/d@,
defined by the formula (III.4O), by means of a trigonometric operator
the numerical calculation of which results from the considerations

developed in chapter II, section 2.3.3.

One can also simply first calculate

dg _ _ =
= };: A, cos 1 (III.41)

by means of a Poisson integral, and then deduce from it g(®) by simple
integration, noting that

g(?) =0 for © =0, 9 =x

Thus the problem will be completely solved as soon as we have calculated
the constant A. One may put, as before

F(zz) = B log zo + @(22)

@(zz) being a uniform function inside of the annulus (71,72) of the

previously defined plane 2z,.

@(22) has a real part zero on the circle (71) of the radius 1.

Consequently, the mean value of B[%(zz)] on the circle (72) is zero.
Thus one deduces, as in the preceding paragraph, that

7T
1 w(®P)dap

ZK(k) 0 Jl - kzcosz$

With w known, it is then easy to calculate A + B log g. Thus the
entire matter amounts to calculating B.

A+ Blogq = (111.42)

If one now describes in the plane 2z the loop L surrounding the
cut (-p,u) in positive direction, the imaginary value of F(z) must
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increase by -2ZnB, according to definition. Now

98 _ __x  f'

ox J;’:‘;E’Bx

However, o8 is known (formula (III.41)), and consequently

ox
+a 5
B =.:13_f Eaﬁd_}{ (I1I.43)
7t " ox

-

34

X

Summarizing, one may say that the following operations have to be
carried out:

(1) Calculation of g'(®).

(2) Calculation of dg/d@, by a Poisson integral.

(3) Calculation of g(?), by an integration of dg/a®.
(4) Calculation of B (formula (III.43)).

(5) Calculation of A (formula (III.42)).

The result reads

u = Aug(?) + g(®)

with uo(@) representing the value of u for the elementary lifting

problem when wg = 1.

Application.- Lifting parabolic cone
= 2 2
W o= eo(k + X )

CP = €0p3 (CP)

3hOne will easily ascertain that Bg/ax becomes zero for x = O.
The integral then does not present any difficulty.
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0) 0 15° 30° 450 60° 75° 90°

p3(cp) o0 5.84L4 2.472 1.472 1.144 1.070 1.062

One will find in figure 53 the pressure distribution compared to
the one found by electric analogy.

3.2 - Case Where the Cone Is Not Inside the Mach Cone (I')

3.2.1 - Generalities

From the mathematical viewpoint, there is an essential difference
between the case where the conical obstacle is entirely inside of (I')
and the case where, in contrast, it is not entirely inside. The differ-
ence becomes very clear if one visualizes oneself in the plane 2.
Whereas the flows studied in section 3.1 led to problems of complex
variables relative to an annular area, the problems to be studied now
will be relative to simply connected areas. This simplifies the investi-
gation considerably. It can be foreseen that we shall no longer have to
utilize the theory of elliptic functions, and in the numerical or ana-
logical study of the problems we shall avold the difficulties arising
from the determination of the "integration constant" for the pressure
(see sections 3.1.3.2 and 3.1.3.3).

If one places oneself in the plane Z, the functions U(Z), V(Z),
W(Z) will no longer be identically zero on (CO). We shall show that

the relations of compatibility then take on a form particularly simple.

These relations may be written

pz W _22 7dV._. 2iZ2 5 dW (III.hk)
2 g2 .1 42 g2 _ 5 4z

and if one notes that on (Cq)

, U

= = -i

dz de

one can deduce from the formulas (III.44) the following relations between
the real parts u, v, w of U, V, W on Cj
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pdu o 1 dv .1 dw (II1.45)
de cos 6 d6 sin 6 46

Knowledge of one function u, v, or w on an arc of the circle
of (CO) entails (except for an additive constant) knowledge of the

two others.

It is easy to extend this result to the case where U, V, W pre-
sent certain discontinuities. Let A; be a point of (COS of the

argument 6, and let us suppose that the real part of W(Z) increases
by Aw if 6 passes from 6, - € to 67 + €, with € being positive

and arbitrarily smell. Let (y) (see fig. 45) be a small arc of the
circle centered at A; and lying inside of (Cg). One has

Nv =R f@-dz
- dz
7 ——
However
AV = R v 37
- y 4z
.
and
Mu =R

f%dz
y

Consequently, it suffices in the case where dU/dZ, dv/dz, aw/az
have a simple pole at A;, to utilize the relations of compatibility in

order to establish the formulas

B u=—L A L Aw (III.46)
cos 6 sin 6

Remark.

The formulas which we are going to set up below will be demonstrated
in the case of the figure where the conical obstacle is in its entirety
in the region x; > 0. But it suffices to return to the generalities
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of section 1.2.2 to recognize that the obtained results will be wvalid
in more general cases. Under these conditions, one may have in the
region (A') (see fig. 2) domains which encroach on one another. How-
ever, no difficulty arises since the relations of compatibility in the
plane (n,8), formula (I.22), show that the functions u, v, w in
the plane (A') are perfectly known, owing to the boundary conditions.
One will note the identity of the formulas (III.L5) and (I.22).

3.2.2 - Cone Totally Bisecting the Mach Cone (Fig. 28)

If one utilizes the plane Z, the problem amounts to determining
the functions U(Z), V(2Z), W(Z) in such a manner that u, v, w are
zero on the circular arcs AjAs, Aj'Ay' (see fig. 46), and that w

assumes prescribed values, with one part on the line A;AA'A,, and the
other part on the line A;'AA'As'. In contrast to what happened in the
preceding problergJ the two half spaces, separated by the plane x3 = 0,

are independent of each other. From the mathematical viewpoint, it may
for instance be a matter of determining the solution in one of the semi-
circles determined in (Co> by the cut AA'. There follows that there

is no theoretical distinction between the symmetrical and the lifting
problem. Naturally, one may operate in the same manner in the plane z.
There will then be occasion to determine the solution in a semiplane,
the upper semiplane for instance; the function w = f(x) is assumed to
be known along a segment AR, comprising in its interior the seg-

ment -1,+1 of the real axis. The function 1s zero on the rest of the

real axis35.

3.2.2.1 - Elementary problem.- As before, we shall start with the
study of the elementary problem, that is, the one where w = Wy on the

part of a cone situated in the region X3 > 0.

We shall operate, for instance, in the plane Z; the func-
tion W(Z) - Wwo has a real part zero on the segment AA' and the
arcs AAy and A'A;', and equal to -wgp on the arc AjA,. One can,

by application of Schwartz principle, extend the definition of this
function to a complete circle; its determination is then classical.
(See, for instance, ref. 13, p. 162.)

35See appendix 3.
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This permits one to write immediately

; 2
iw 1l + 2% - 2Z cos 6
T W(zZ) =wg - ﬁO log 1

(III.47)
1+ 2% - 22 cos 6,

with the logarithm being real for a real Z, and with 6; and 65
being the respective angular abscissas of the points Ay and Ap. The

function V(Z) may be determined, for instance, with the aid of the
relations of compatibility

v _ Yo z2 + 1 1

av N 1 1 1
dz T ZZ

-i67 -
Z - e 1 Z - e Z - e

S1l, _ O -165

In the integration it suffices to choose the integration constant
in such a manner that the real part of V(Z) becomes zero on the
arc AjAp. Thus one obtains

iv 16y 162
v(z) = ~—9-cot 61 log 2————172— - cot 65 log Z~Z—§—75—
T 1 - zetVL 1 - zet7%

(I11.48)

with the logarithms having an argument zero on the arc AjA,. One finds
for v the following values

<
]

Wo cot 67, on the arc AA,

<
]

Wo cot 65, on the arc A'A,

besides, one could have written these values directly by virtue of the
relations3® (IIT.45) and (III.46).

36This shows that one could have written the formula (TI1.48)
directly, without writing the relations of compatibility.
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In order to write the value of v on the axis AA', one must cal-

culate the argument of
ie
e 1. Z
1 - zet01

Now

16 . .
argl€ T =2 | - arg (elel - z><1 - Ze'lel)
eiel

1-2

For calculating this argument, for Z = X, one notes that the modulus

of e - ZJ\1 - Ze is the one of e - , under the assump-
tion of 1 + X2 - 2X cos €15 on the other hand, its real part is written

cos Gl(l + Xz) - 2X. If one puts, therefore

g = _2X
1+ X2

6y
Arg 9———JH%%- = Arc cos T 5
l-Zell - X COSs 1

cos 91 - X

with the arc cosine having thus, besides, its principal value.

finds likewise

(II1.49)

One

(T11.50)

X - cos 62

192 X - cos 6
Arg Z_-..E___ = =Arc cos 2
192 1 - x cos 92
1 - Ze
hence on the axis AA’
Lle) cos 91 - X
v = - —jcot Gl Arc cos + cot 92 Arc cos

e 1l - x cos 61

- X cos 92
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The calculation of U(Z) is perfectly analogous.

N 162
U(z) =~ —9]._1 1o5Z-e

1 1

Br |sin 65 1 Zeiez

sin 61

137
One finds
i6
1
og §____:T%_
i
1 -7 *
(I11.51)

with the logarithms having the same value as in the formula (III.48).
One finds as the value of the pressure coefficient (WO = a)

Cp = B2 L
p B sin 92,

c, =22 __L _
P B sin 6y

cos 64 - X
c, =2%__L  Arc cos i +

, on the arc AAy

1 Arc

P E; sin 6, 1 - x cos 6

on the axis AA'

sin 92

In the case where Oxlx3 is a symmetry plane

92=ﬂ-91
and the last formula (III.52) may also b

cos B4 - x
C. = —2% Iprc cos 1
P Br sin 64 1 - x cos 6y

sin 91'

ha

e written

+ Arc cos

on the arc A'Az

X - cC

(111.52)

(o} 62

cos
1l -x

X + cos 61

b
cos 92

Arc sin

x sin O
B 1 Jl - xzcoszel

1l + x cos 6

1}

(111.53)
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In order to utilize these formulas, it is sufficient to connect
the angles 67 and 6, with the geometrical form of the given delta

wing (fig. 47). One has, according to definition

cos 8y = l/B tan wy cos b5 = 1/B tan wy
Let us recall also that

Bx,

X = =

X1

One will find in figure 48 a few applications of the for-
mula (III.53).

3.2.2.2 -~ Resultant of the normal forces on the upper region
(x3 > O?.- One can give, as in section 3.1.9, a simple formula permit-

ting the calculation of the resultant of the normal forces. If we des-
ignate by CZ+ the dimensionless coefficient characterizing this

resultant, CZ+ is defined by the equality

U

Cp dx

c,t = - 2ZA
z m
f ax
A

Likewise we define the dimensionless number CZ_, characterizing the

forces normal to the lower region (x3 < O), by the equality

with the integrals taken in the plane 1z, the first on the upper edge
of the cut (A,u), the second on the lower edge. This definition entails
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that the total C; of a cone is written

Now

v
J AT
A cos 91 cos 62

On the other hand

M - pu
2
L/1 Cp dx = 2R k/w U(z)dz| = -4R L/1 u(z) —L_:"Z"TE az
N A ApA'AAL (1 + z2)

1 - 7@

(1 +22)°
1 + 2
tour BAoA'A1B (fig. 46) is zero. On the other hand, with U(Z)

having a real part zero on the arc ApA,, one has

2 2
R f u(z) _1'—22 az| = -R f u(z) L=2% _ I:MR:I
Aph' ARy ( AAz (1 +23)°

1+ z8)

However, the integral of U(Z) along the closed con-

R; denoting the residue of the function to be integrated, at the

i
point Z =

K&

=L
2B

&I%

R: = - &
2 d

Z(z=1) (z=1)

Thus one obtains the general formula

. cos 6, cos 6
c,* = - 2in 1 2 dW (III.54)
B cos 6 - cos 6, dZ(Z=i)
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In the case of the elementary problem, studied in section 3.2.2.1,
one has

aw _ iq ©O8 65 - cos 64

dZ(Z:i) X cOos 61 cos 62

whence
c," =-2x .21 (1II.55)
z B B

if one puts o = -i, following the notation customary in the wing theory.

Thus we shall find anew a remarkable result: the value of the
coefficient Cz+ is independent of the angles 6, and 65.

3.2.2.3 - Study of the general case by means of the method of
electric analogies.- The method set forth above (section 3.1.3.3) may
be applied in superposition. The electrodes must be disposed on the
arcs AAy, A'A,, and on the segment AA'. These electrodes must be

brought to prescribed potentials; the conductive arc AjA, 1is brought

to the potential O. Finally, one will detach a small electrode at the
point B with the purpose of measuring the resultant of the normal
forces; this resultant, given by the formula (III.54) is, in fact, pro-
portional to the intensity entering at B.

The value of u on the arcs AA; and A'As; 1is immediately known

by simple integration.

In fact, if for instance wp designates the value of w given for

(¢ positive and arbitrarily small), one has37, according to for-
mula (ITI.46)

37Physically, the fact that the pressure on the bounding genera-
trices of the conical obstacle depends only on the inclination of the
tangent plane along these generatrices is obvious. It expresses the
independence (see section 1.2.4) of these bounding generatrices with
respect to the other generatrices of the conical obstacle.
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Yy

Uy = = ————
1 B sin 6,

and the formulas (IIT.45) permit the calculation of u on the entire
arc AA;. Thus it is not necessary to measure the intensities leaving

each of the electrodes except over the length of the segment AA'. As
before, this intensity, proportional to aw/aY, furnishes immedistely
the value of Ou/d0X along the axis OX, owing to the formula

g du_ _2X dw
X | _x2 Y

Since one knows the value of u at the points A and A', one
uses the superabundant data for calculation of the value of u on the
axis AA'. Thus it 1s unnecessary to obtain the distribution of the
potential, inside of the tank, as in the case described in sec-
tion 3.1.3.2.

3.2.2.4 - Study of the general problem by purely numerical methods.-
In order to simplify the exposition, we shall be content to examine the
case where the given cone admits the plane Oxlx3 as symmetry plane.

This amounts to stating that in the plane 2z the function w(x) is
even in x on the cut (—p,p) representing the given cone.

We assume wy to be the value of w at the points x =1
and x = -1, and put

£(x) = w(x) - wy

. 1 1
If 1 <x< one will put = =
" P * cos 6’ H cos 07

One notes that F(0) = 0. After this statement, it is first of all evi-
dent, according to the foregoing, that one can immediately calculate the
pressure outside of the cone (I').

and F(0) = £(x).

In order to calculate the pressure inside of (I'), one will consider
the flow as the superposition,

l.- of an elementary flow (w = -Wp, on the entire cut),

2.- of an infinite number of elementary flows bisecting the cone (I')
and symmetrical with respect to Oxlx3. These flows give at the
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point x(x< 1) a pressure coefficient equal to

1
c =L L & ave sin sin 6 a6

P 7 sin 6 d6
B 0 1 - x2cos26

3.- of a symmetric flow inside the Mach cone, defined by w = £(x), on
the cut (-l,+l). One may apply the method described in section 3.1.3.3
for the calculation of this flow. We shall simply remark that it is not
necessary to determine the integration constant since one knows that

u =0, for x = #%l.
3.2.3 - Cone Partially Inside and Partially Outside
of the Mach Cone (I') (Fig. 30)

3.2.3.1 - Symmetrical elementary problem.- The circle bounded by
(CO) must be notched by a cut CA (see fig. 49), with the real part

of W(Z) assuming the constant value Wy = @ on the upper edge of the

cut, and the value -wy on the lower edge. On the circle (CO), w is
zero, except on the arc AA; where W = wy, and on the arc AAy' where
W = -wy. One will designate the point C on the circle Co Dy

Z a, and the argument of A; on the circle (CO) by 6.

The function W(Z) can be written without difficulty

(z - a)(1 - az)

(Z _ eiel)<z _ e-i61>

W
W(z) = wy + 12 log
k14

with the argument

(z - a)(1 - az)
(z ) eiel) <Z ] e-iel)

being chosen equal to zero at the point A on the upper edge of the
cut. Since W(Z) is defined with exception of an imaginary constant

only, one may also write
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2ztq - (1 + z8)

W
W(z) = wo + i -2 log : (1II.56)
n 1 + Z2 - 227 cos 61
. 1 1
uttin th = =fa + =).
b & 0 2( a)
We shall now seek U(Z)
p 4U _ _2iZ aw _ _2vp 7 1 a 1 _ 1
dz 2 daz 19 2 Z - a 1l - aZ i6 -i6
Z2 -1 72 -1 e 5 cta
whence
2w : 16y
U(z) =Bn02 ;ne 1log & '_g -8 zlogHE (I1I.57)
s -
1 l-Zell 1l -2a
Consequently, on the arc AAy
., =2x 1

P p sin 6y

which is a result one could foresee immediately.

One obtains easily the value of C
to write the formula (III.49)

D along the axis O0X; it suffices

cos 67 - x
Cp = Z2al 1 _ pArc cos 1 +—28  jogl2 =X
nBlsin 67 1 - xcos 61 1 - g2 1l -23aX
(111.58)
Let us recall that x = —&X __

1+ X2
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Particular case: Let us assume that 07 = g, a = 0, under the
following conditions
_ 2a
On the arc AA;, Cp = B
On the segment AA', Cp = %":E.rc cos( - xﬂ 3 (III.59)
7

= 22T | Avre sin x
Brc\2

Let us recall that in all these formulas x = B il, with (xl,r,O)
1

being the semipolar coordinates of a point of the wing A 1in the system
of axes (0x;,Xp,X3), and that cos 6; = 1/B tan w.

3.2.3.2 - Elementary 1ifting problem, in the case where a = 0.~

The transformation s = JE- transforms the circle (CO) into a semi-
circle in the plane of the complex variable s. 1In this plane, Ag
and A;' have as homologues M; and My’ (see fig. 50). The func-
tion W(s) has a real part zero on the arc MiM;' and equal to wj
on the arcs AM;, BM;', and on the segment AB.

We shall determine directly the function U(Z) or rather the func-
tion U(s). In fact, U(s) has its real part zero on MM;' and one

knows, according to the relations of compatibility, that as in the pre-
ceding paragraphs

W —
u =2 __;;__, on AMy

B sin 64

Yo 1 M. !
u=—=-——" on BMy

. 2
B sin 91
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Moreover, the imaginary part of U(s) is constant on the real
axis and may, consequently, be put equal toc O. Thus one may analyti-
cally continue the function U(s) across the real axis. U(s) is then
determined as solution of a Dirichlet problem inside of the circle of

‘radius unity. One has

iWo

o (s ) eiel/z)<s N e-iel/z)

u(s) = Bx sin 6, (s . eiel/z)(s ) e-iel/z)

with the logarithm having the value of inx for s = 1.

Tt is then easy to calculate u on the real axis, that is, on the
segment OA of the original plane Z. Let us put

<. 22 _ 2s®

1+ 72 1+ st

The quantity under the logarithmic sign is written

e

s2 -1 - 2is sin E%
e
s - 1 + 2is sin 3%
Its argument is equal to that of
2
e
- (sz -1l - 2is sin —2—1-)

Now, the real part and the modulus of this expression are, respec-
tively, equal to

(52 - 1)2 - 4s2gin? %% = st +1 - 252(2 - cos 61)
and

2 (2]
(sz - l) + Ls2sin? 2% = su + 1 - 2s52cos 61
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Hence
W 2x(l - cos 6
u=-—O—Arccosl— ( l)
pn sin 6y 1 -xcos 6y
[ ex(a 61)]
X - cos
Cp = 2% ___ Arc cos|l - 1 (I1I.60)
pn sin 69 l - x cos 61
Particular case.- Let us suppose that 67 =Z
2

2a
C, = &= Arc cos(l - 2x
Rl ( )

3.2.3.3 - Elementary lifting problem in the case where a # 0.-
The elegant demonstration which has just been made for a = O and the
principle of which is to be found in the original memorandum by Busemann,
conceals one difficulty; this has caused M. Beschkine (ref. 11) to give
a formula in the case where a % O which, at least in certain cases,
leads to difficulties. In working directly with the function U, one
risks forgetting the supplementary conditions which, because of the
relations of compatibility, must be applied if one does not want singu-
larities for the functions U, V, W at points other than the ends of
the cut.

In fact, if U(Z) is regular inside of the circle (co), v(z)

and W(Z) will have a logarithmic singularity at the point Z = 0. We
shall study the case where a ﬁ 0, by studying directly the function W
and limiting ourselves to not having singularities outside of the boundary
generatrices of the cone. Besides, we shall again take up this important
problem in section 3.3.

Thus it is a matter of studying the case where w = Wo on the
arc AA; and on the upper and lower edges of the cut CA (see fig. L49)
and on the arc AA;'; the transformation

-2 - a
1l - az

g

which maintains the circle of radius unity, leads us to the case where
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the cut is arranged following a radius. Finally the transformation

leads, in the plane s, to search for a function W(s) the real part
of which assumes the value wgy on the arcs BM;, B'Mj' of the semi-

circle of radius unity of the positive plane and on the segment BB',
and becomes zero on the arc MjM;' by application of Schwartz' prin-

ciple; one may continue the function W(s) - Wwo to the lower semicircle

of the plane s. This function is defined by the values of its real
part on the circumference of radius 1 of the plane s. However, since
dW/dZ must become zero at the point Z = -1, dW/ds must become zero
for s = #i.

In order to satisfy this condition, one decides to admit, for
W(s), singular points at the points My, My', Ms, My', and at the

point s = 0. According to the investigation of section 3.1.1.2, this
point may be a pole of the order one, with the residue being necessarily
purely imaginary.

If ik 1is the residue of this pole, one may therefore write

2
W(s) = wg + G(s) + ik L+ s”
S

with G(s) being a holomorphic function inside of the circle of
radius 1.

2
However, on the circle |s| =1, ik L+5  is purely imaginary.
s

One deduces from it immediately the function G(s); consequently, W(s)
is of the form

P
iw 1+ s2 - 2s cos E% 2
W(s) = wg - _9 log 7 + ik LT S
I s
1+ s2 + 2s cos 7%

%} being the argument of the point M.
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One calculates U(s), owing to the relations of compatibility

Py ?y
1= -i=
dau _ _ __ 29 (2 +a)(1+s%)( ge” 2 | e 2 |,
ds (1 - a2) st -1 2 _ %1 2 _
2k (s2 + a)(l + sza)
B (1 +a2)s?(s? + 1)
because
22 _ 5 (o +2)(1 + ga)
72 -1 (62 - 1)(1 - =2)

One verifies immediately that the points s = ti are not poles
(and that, consequently, the points Z = #1 are not singular points),
if

Hence, for U(s)

2wp a(1 - s2)

@ 2
B cos 3% (l -8 )s

U(s) = +

iwg (l + 2a cos P + az)

2 %
log S - e 2 s + e 2

prt (1 - a®)sin Py _ 9>< . f;)
2 s + e

(111.61)

It is easy to relate the angle ¢; to the given angle 64, fixing
the point A; on (CO) in the plane Z
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6y _cos 2 (1 + a2) +2a + 1(1 - a%)sin @

1l + 2a cos @l + a2

149

The calculation of C is then simple; it suffices to resume the cal-

b
culation at the end of the preceding paragraph

252 _2(1 + a2) - zal1 + 72) _X-X%
sh 1 (1+a2)(1 +22)kz 1 -xx0

if one puts, on the real axis

27, 2a
X = ——— xo=—_
1+ 72 1 + a

Under these conditions

cos 61 - Xp
1l - Xp cos 91

cos ¢l =

and, consequently,

2a

C —_— on the arc AA
P B sin 91’ 1

se o] 2(x - x)(2 - cos @)

7B sin 69 1 - xxgy - (x - xo)cos 4

.

on the upper edge of the cut AC.

(111.62)

(111.63)
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If a = xg = 0, one arrives again at the formula (III.60); the
formula given by L. Beschkine (ref. 11) does not contain the first term.

3.2.3.4 - Calculation of C, in the lifting case.- C, 1in the
plane 2z 1is always defined by the equality

‘jp Cp dx
L

¢, = -—
K
h/j dx
A

with the first integral being taken in the positive sense on the loop
surrounding the cut.

However, with the adopted notations

1

A =X U = c——_—
Y cos 91

and

H l - x5 cos 6
[fae gty o np-timmn
cos 91
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(I11.64)

NACA T 1354
R; and R_; Dbeing the residues of the function to be integrated at
the points Z =1 and Z = -i; finally
C. = 2ix cos 64 (dW) (dW)
g = an - (X
B(l - Xq cos 61) AZ/ (z=1) 42/ (z=-1)
In the purely lifting case

l‘-iﬁ cOS 91 <dw

B B(1 - xg cos 61) EE)(zzi)

Cz

We apply this formula to the elementary case
1 - a2

One will put for simplification for 2 = i

a = tan<§ - ﬁ) Xg = -cos B

One then finds that
.2 B
i sin cos
iw, B =
T P
(cos‘Pl - cos B)cos ?%

aw
<dZ>(z=i)

cos 91 sin B

¥y

C. = - X
(1 + cos B cos 91)(005 ¥, = cos B)cos
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If one utilizes the equality (III.62) in defining ?1 and if one

puts a = -1, with 1 designating the incidence, one finds the very
simple formula

B
. cos
Cp =4 2 (TII.65)
B o
2

COs

3.2.3.5 - General case.- The investigation of the general case may
be made either by electric analogy or by calculation. The methods to
be employed result from what has been seen in sections 3.1.3.2, 3.1.3.3,
3.2.2.3, and 3.2.2.4.

Let us only indicate that, in the solution of the lifting problem
by electric analogy, one must arrange a singularity at the point C
like the one defined in section 3.1.3.2.3. The adjustment of the poten-
tial to which the conductive part of this singularity must be brought is
obtained by the condition that no intensity enters at the point A'.
To verify this condition, one will use the method already indicated in
the section noted.

Naturally, the total C, will be very easily determined by mea-

surement of the intensity entering at the point B and application of
the formula (III.64).

3.2.4 - Cone Entirely Outside of the Cone (I) (Fig. 29)

3.2.4.1 - Elementary symmetrical problem.- The problem consists in
determining U(Z), V(Z), W(Z) by means of the following conditions:
the real part of W(Z) assumes on the arc AjA, (see fig. 51) of the

circle (CO) the constant value wp = a, and on the arc Aj'As' the

value -wg. On the other portions of (CO) this real part is zero.

Thus one may write immediately the value of the real part of U(Z) on
the circle (CO) (formulas (III.4S), (III.46)). It is an even function

of the argument 6. One has
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u =0, on the arc A'A,
¥ _1

u == == —=— on the arc AsA
B sin 62’ 2"1
W

u= - -9 _l - .l s on the arc A)A
B \sin 65 sin 6y

whence for the function U(Z), the formula

. i@
W, 2
u(z) = 20| 1 _10geS=-2 _ _1 q5ge -2 | (III.66)
1 - Zelez sin 91 1 - Zelel

the logarithms assuming the value in at the point Z = 1.

The complete calculation of V(Z) and W(Z), likewise, does not
offer any difficulties.

One deduces from this formula the calculation of the pressures on
the obstacle and outside of the obstacle.

In the plane x;0xp, the pressure coefficient has the value

Cp = 2o L on the obstacle
B sin 65

Cp = 22 .l - .l , 1in the region comprised between the obstacle
P \sin 6 sin 6y and the Mach cone of the point O

Let us recall that if oy and Wo designate the angles formed by
the bounding generatrices of the obstacle with Ox;, one has according

to definition (see fig. 52):

cos 67 = 1/B tan wy cos 65 = 1/ tan wy
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Inside of the Mach cone, finally, at the point xq, X5, one has

cos 6, -~ X cos 6q -
c, =221 __ arc cos a - —L __ Arc cos 1-%
P prlsin 6, 1 -xcos 6; sin 6y 1 - x cos 6y

X
if x =98 22 the arc cosines having their principle values.
xl’

3.2.4.2 - General symmetrical problem.- The general symmetrical
problem does not present any difficulty, since one may operate by means
of superposition; let w = a(@) be the given value of velocity compo-
nent following OX3. over the length of the obstacle (91 <0< 62).

The formulas giving the CP may be written immediately

62+O
Cp = - ﬁk/ﬁ de _ at the point of the obstacle of
PJe sin 6 parameter 6
65+0
CP = - EL/‘ qﬂ' , behind the obstacle, outside of the r (II1.67)
B 6,-0 Bif 6 cone (I')
6,+0
Cp = - = Arc cos €08 @ - & _da = jpqide of the
Bt 61 -0 l -t cos 6 sin 6 Mach cone

The integrals of the preceding formulas must be taken according to
the signification of Stieljes; this is a fundamental condition for the
case where a(6) presents discontinuities. In particular, one will
have to take account of two discontinuities: the discontinuity +a(91)

for 6 = 0, and the discontinuity —a(@z) for 6 = 65. Not to forget

these discontinuities was the reason that we wrote certain limits of the
integrals 67 - 0, 65 + O.

3.2.4.3 - Elementary lifting problem.- The solution obtained for
the symmetrical problem (formula (III.66)) is valid, since dwW/dz
necessarily becomes zero at the points Z = *1; also, dU/dZ becomes
zero at the point 2 = O; thus the relations of compatibility do not
entail any singularity other than the points A; and A,. We shall see
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that in case of the lifting problem a few precautions must be taken if
this condition is again to be satisfied.

Let us first assume that the points Ay, A, and Ay', Ap' are

simple poles for %g, %%, and %%. One may then write the values of
u, Vv, W on the circle (CO) utilizing the relations (III.L5)

and (III.46) as well as the boundary conditions. These latter let us

know that w assumes the value wy on the arcs AjAg, Ay'Ay'

(fig. 51). On the other hand, the component u necessarily continues
outside of the cone (since u represents the pressure except for one

constant) and, being odd in X3, must become zero in the plane Oxyxp

outside of the given delta wing. Consequently, u = O on the cir-
cle (CO), outside of the arcs AjA;, A,'Ay'. Hence one deduces, as

before, that on AjA,

v = a cot 6y u=-2 1
B sin 6o
but on the arc AAl
sin 6, -~ sin & cos B - cOs @
W =aq ? 1 vV =a 2 1
sin 92 sin 92

We note therefore that w assumes on the arc AAl' the same values

as on the arc AA;, whereas v assumes opposite values. Hence one
deduces that the region of the plane Ox3X5, comprised between the
trailing edge 4y and the Mach cone (see fig. 521; is thus a region of

discontinuity for the velocity.

One sees therefore that the hypothesis set up before (simple poles
for U, 4V ‘-1-‘1) is incompatible with the fact that U, V, W do
d4z2° dz° a4z
not admit singularities other than the points Ay, A,, Ay', Ay'.
One may realize this, besides, in another mammer; in order to satisfy
in the simplest possible way the boundary conditions imposed on U(Z),
it suffices to write U(Z) in the form
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1 - 2Z cos 61 + Zz

U,(2) = - —da ___ 1og

pr sin 8y 1 - 22 cos 6, + 72

since this function Ul(Z) well fulfills the boundary conditions
required for the function U(Z) on the circumference (C ). However,

_ 2iq Z - cos 61 _ Z - cos 92

dz Pr sin €211 - 22 cos 0] + 22 1 - 22 cos 6, + 22

and for Z =0

du :
(__15 = ___g%gL-—-Qcos 61 - cos 62>
dz /,.o pr sin 65

If, therefore, the functions U(Z), V(Z), W(Z) are not to admit
singularities inside of (CO), the solution Ul(Z) cannot be retained

Just as it is because the corresponding functions Vl(Z) and Wl(Z)

would have a critical logarithmic point at the origin38.

Thus we are led to modifyy the solution Ul(Z) by introducing a
singularity at one of the points Ay or A, (and, by symmetry, at Ay’
or Az'). Physically, by virtue of the rule of forbidden signals, this
singularity must be placed at the pair of points A, A;', because the
bounding generatrix A (fig. 52) which takes the place of the leading
edge (having as image the pair of points Ay, Ao' 1in the plane Z) is

independent (see section 1.2.4) of the trailing edge (pair of
points Ay, Ay', in the plane Z). One then sees that, by putting

1 - 22 cos 61 + 28 (cos 6; - cos 6,)z

u(z) = - —32&— log -y
7B sin O3 1-2zcos 6, +22 B sIn Oz 1 _ 27 cos 6, + 72

(111.68)

38L. Beschkine (ref. 11) took the function U;(Z) as the value of
U(Z); see further on, in section 3.3.2, the discussion of this question.
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one has, for U(Z), a function satisfying the boundary conditions on
(Co), holomorphic inside of (Co), the derivative of which becomes zero

at the point Z = 0 and consequently leads to functions W(Z) and V(Z)
which do not present singularities inside of (CO). Besides, this solu-

tion is unique if one takes account of the principle of minimum singu-
larities.

One may then calculate the functions V(Z) and W(Z). Thus one
finds for W(Z)

io ie
s 2 1 - cos 67 cos O 1
W(z) = - 1oge — =2 o ( —= 2) 106 =L+
b1 1 - Zel 2 T sin 2 sin 1 1 - Zel 1
67 - cos 6 2
o 80° 7)) - COF Y2 zé -1 (I11.69)
= sin 6 1+ 2% - 22 cos 6y
and
. i6o -i6g
V(2) = - =% cot 65 log (Z = e'e )(Z _— = ) +
T (Z - e1 l)(Z - e-l l)
. cos 87 Z{cos 67 - cos 6
215;‘ 1 ( 1 2) (III.?O)

T sin 63 1 4+ 72 _ 22 cos 6

Thus one finds that on the wing (arc AlAz) the component v has
the value

v = q cot 92

In the region of the plane Ox;3x, outside of the wing, the compo-

nent v 1is always zero; wWhereas w assumes a constant value in the part
comprised between the trailing edge and the cone (I'):

1 1l - cos 6y cos 62 1l - cos(el - 92)
W = - = =Q
* sin 6, sin 6] sin 6, sin 6,
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Finally, in the part of the plane Oxyx, inside of (I') (seg-
ment AA') v =0, and w is given by the formula

cos B85 - X
w = & Arc cos 2 -
14 1l - x cos 62

- 0 0 -
a (l cos 0y cos 2) Are cos[_S98 61 - x +
14 sin 61 sin 92 1l - x cos 91
cos 6, - cos 9 J - xo
& 1 2 _ Nt -x (III.71)
7 sin 6o 1l - x cos 91

3.2.4.4 - General 1lifting problem.~- One sees immediately that, if
one wants to uniquely calculate the pressure on the obstacle, one may
utilize the same formula as for the general symmetrical problem (for-
mula (IITI.67)). Besides, the study of the values U(Z), V(Z), and W(Z)
in the general case will also be very simple with the aid of superposi-
tion. One will easily verify that, if w = a(6) 1is the prescribed
value of the normsl component along the obstacle (91 <6< 62), one

has, for instance

0,40 2
2 1+ 2% - 2Z cos 6
u(z) = L log . 1 d?(eg "
Bt Jo, 1+22% - 2zcos 9 Sin
217, L/p92+o cos 97 - cos 6 4 (9)
= (04
pn(l - 22 cos 6, + 28) Uoy sin 6

Analogous formulas could be written for V(Z) and W(Z).

Thus the electric analogy is less interesting in this case, since
there is a way of solving the problem explicitly. We shall simply note
that the singularity to be placed at the tank at the image point of the
trailing edge is a doublet.
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3.3 - Supplementary Remarks on the Infinitely

Flattened Conical Flows

3.3.i - Continuity of the Results
At the end of this investigation, it will not be unnecessary to

state briefly the continuity of the obtained results.
If one takes for instance an elementary flow bisecting the Mach
65 toward =, one finds,

cone for which one makes 6, tend toward O,
passing to the corresponding limit in the formula (III.52) as limiting

value of the pressure coefficient

cos 91 - X
Arc cos
1l - x cos 61

+

2q, 1
C,., = =|1im —_—
P oBr 8170 5in 61

. 1 X - cos 65
limg 3, —=—— Arc cos =
2 sin 65 1l - x cos 0y

2a) L+ x &-:I:h_g_l__ (I1I.72)
Br{\1 - x \1 + x| pn .2

If one now makes, in an elementary flow, symmetrical or lifting
b and c, respectively, tend
Besides,

(see sections 2.1.2.2 and 3.1.2.3),
toward -1 and 1, one again arrives at the formula (III.72).

the formula (III.72) has already been written, at the end of sec-
One finds, finally, the same result by transferring like-

tion 3.1.1.7.
wise results from section 3.2.3. If one makes, for instance, in the
61 tend toward zero and a toward -1, one obtains

formula (III.58),

2af ; 1 cos 6, - x
C, = £%|1im —= Arc +
P Bnl: 9170 sin6; 1 - x cos 6,

F+x,1-X|_k
S2d >

1 a -X 2a
1 - log = 2=
ima—*ll_az El.-a)(]:l Brfyl - x 1 + X A




160 NACA ™ 1354

Likewise, starting from equation (III.63) and making a tend
toward -1, 6; toward zero (Ql tend toward zero)

bao 1 -X | 2aq; 1
Cnh = lim ——— Arc cos |l -
P21l + X pr 010 Sip 61 (

Xg—-1

2(x - %) - cos 9;) )=z&1-x+

1 - xx4 - (x - xo)cos @l prejl + X
: 2(x - xg) L+l 20l X, [L+x|{_ba 1
llme""l (l + xo)(l - x) 1 - x4 Topn|l ¢ X 1 - x| prf _ <2

Likewise, one may verify the continuity of the results under the
hypothesis where a single one of the generatrices of the conical obstacle
is situated on the Mach cone. One thus obtalns a limiting case between
the flows studied in section 3.1.2 and those studied in section 3.2.3.

If one supposes, for instance, that one of the bounding generatrices
has as image the point Z = 1, the second the point Z =a, -1 <a <1,
one finds, whatever the manner of making the passage to the limit, for
the symmetrical problem

C=&! l+x+ a logx—a
Poap\1 - x 1 - aX

and for the lifting problem

- hag 1-x
R N e e

2a z(x - XO) )-!-G.E((l +a)é - Za(Xz + l):l
B\ (X - x)(1 - %0) (3 - x)(1 - a)\(X - a)(1 - ex)

In the same manner one can verifyy the continuity between the flows
studied in sections 3.2.3 and 3.2.k.
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3.3.2 - Discussion on the Possible Singularities
of Lifting Problems

In this entire chapter, we have limited ourselves to giving the
solutions which satisfy the condition, stated frequently: To admit as
singularities in the plane Z only the bounding generatrices of the A,
and to choose from among all possible solutions the solution which sat-
isfies the principle of minimum singularities. This is a hypothesis
which is Jjustified by its simplicity and which we have set up here with-
out using the experimental results apt to guide our choice for placing

the singularities39.

A first theoretical possibility would consist in admitting singu-
larities possible on the generatrices of the Mach cone, having as image
the points Z = #1 1in the plane 2. This seems to us not easily admis-
sible from the physical point of view. Besides, to our knowledge, the
various authors who have treated problems of infinitely flattened conical
flows have always eliminated this possibility (see in particular refs.

10 and 11). 1In fact, it is hard to understand how the pressure could
become infinite in the neighborhood of these generatrices.

In contrast, one has a means of obtaining solutions different from
those obtained in the course of this investigation, in tolerating, as
possible singular point, the point Z = O.

We shall first make the following general remark: Let us take the
case of a cone where one of the bounding generatrices has as image the
point Z = O 1in the plane Z; in this case the pressure remains finite
in the neighborhood of the corresponding bounding generatrix. This
results from the formulas (III.23) and (III.24k) for the case of a cone
entirely inside of (I') (section 3.1.2), and from formulas (III.58)
and (III.60) for the case of a cone partially outside, partially inside
of (') (section 3.2.3). We shall show that, utilizing conformal repre-
sentations and maintaining the circle (CO), it will be possible, even

in the case where Ox; 1is not a bounding generatrix, to define a solu-

tion of the lifting problem in such & manner that the pressure remains
finite along a bounding generatrix inside of (I'), under the condition
of admitting the point Z = 0O as singular point.

39The theoretical study of flows (movements) in incompressible
fluid has been rendered possible and effective only owing to the famous
hypothesis of Joukowsky which indicates the choice to be made among the
singularities which are possible for the flow. The study of the proh-
lems treated here shows uncertainty in the state of our actual knowledge
concerning the conditions which the theoretical solution must satisfy
in order to represent best the real phenomena.
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We return to the investigation of section 3.2.3.3 where a ﬁ 0:
One may in fact come back to the case where a = 0, by the transforma-
tions utilized before

c=%2-8 s =0
l-az

The function U(s) the determination of which was the problem is
then defined inside of the semicircle, and it satisfies exactly the
same conditions as the function U(s) studied in section 3.2.3.2.

Thus one will have
s - e a s + e 2

(111.73)

®, Dbeing defined starting-from 6 by the equality (III.62). This
leads us to a value of the pressure coefficient

e el sg)(a - eos o)
P Br sin 64 1 - xxq - (x - xo)cos P4

a value already given by Beschkine which is deduced from the for-
mula (III.63) by suppression of the term in logarithm. This pressure
coefficient remains finite along the bounding generatrix inside of (I'):

X=Xo.

However, if one calculates the functions W(Z) and V(Z), corre-
sponding to the function U defined by equation (III.73), one finds
the following results
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1§
®
vy 1+ s2 - 25 cos —=
W(S) =wo-i-;r——log cpz +
1+ s2 + 25 cos ?l

o) cosﬁ—l—log (S - i\I;
n Z\I; (s+i\];)(l-\!§) sja + 1
iw sz-l-2ssin?l
V(s) = - —2 cot 6 log | -
2 .1 + 2is sin—z—

ot ). o= 22

_i_w_o cos -C&L- L log
] o RPN ey
(II1.74)

These formulas call for the following remarks (see fig. 54). We

assume a > O:
1. On the region of the obstacle comprised between OD and O A,

('Arg sl < cp?l) one has

W'—'Wo

v = +w cot 61

a result which is quite conformal to the formulas (III.4h) and (III.L6).

2. On the region of the obstacle comprised between OD and O 4,

s 1is real -1 < s < 0, for the surface X3 < (ﬂ; one sees that w = wj
¢

cos —&
2

v assumes the opposite values z+wp \]_
a

on every surface, whereas
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3. On the region of the plane Oxlx2 comprised between O Al and
Oxy (s 1is purely imaginary and varies on the segment Qw), v main-
?
cos &
tains constant opposite values, equal to a zw ————iL, whereas w
a
increases infinitely in absolute value.

k. On the region of the plane comprised between Ox; and OD'

(S? which ig purely imaginary, describes the segment uB), Vv is zero;
W, infinite on Oxy, becomes zero on OD'.

Behind the generatrix O Ay which one may consider as the trailing

edge of the wing A studied, this solution furnishes therefore a zone
of discontinuity of velocity (the discontinuity being in the direction
of Oxz) which occupies the region 0 Ay, Oxy. Moreover, the axis Oxj

is a singular straight line for the flow. Thus one encounters a scheme
which seems at first rather tempting and reminds one of the study of
the wing in subsonic flow; behind the wing there appears a zone of dis-
continuity of velocity produced by vortices following the direction of
Ox;, and the singularity encountered along the axis Ox; reminds one

of the "marginal vortex" of the wing theory. As in the case of subsonic
flows, this flow scheme appears linked to the condition of having a
finite pressure along the trailing edge.

The formulas (III.T4) likewise show us that the flow found does
not satisfy the boundary conditions if a 1is negative, that is, if the
obstacle is not situated on the same side of the plane Oxlx3. In fact,

in this case w would admit on the obstacle a discontinuity in the
neighborhood of the axis Oxy; but this is incompatible with the boundary

datauo.

If one wants to apply a similar method in the case of a symmetrical
flow, one likewise notices immediately that the result is incompatible
with the given boundary conditions since one obtains a discontinuity
for w.

Let us now visualize the case of a flow around a cone entirely
inside of the Mach cone, with the bounding generatrices on the same

uOThis solution which has been suggested by Beschkine must, there-
fore, certainly be rejected in the case where a is negative; the fig-
ure 6 given by Beschkine (ref. 11) seems to show that this author has
not seen this fundamental restriction. In this case one must certainly
adopt the solution set forth in section 3.2.3.3.
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side as Oxy (fig. 55) and the remzining finite on the trailing
edge O Ay. The function U(Z) +then has the form

(z - b)(1 - 2b)

(c - 2)(1 - Ze) (111.75)

u(z) = % c(b,c)

with C(b,c) being a function of b and of c.

One then sees that in calculating V(Z) and W(Z) one will find
the same particularities as previously: +the point Z = 0 will be a
singular point. In the region comprised between Oxy and 0 Ay one

states a discontinuity of the component v whereas the velocity w
becomes infinite along Oxq.

The following problem arises: Should one adopt in the case where
the two bounding generatrices 0O Ay and O A, are on the same side

as Ox; the solutions exposed in the course of this chapter, which we
shall call solutions of type I (singularities on O4A; and O AQ), or

the solutions we Jjust indicated, which we shall call solutions of type II
(singularities along O A, and Oxl)?

Let us note first of all that, for reasons of continuity, it is
absolutely necessary to adopt completely one or the other viewpoint;
one cannot admit a solution of the type I for the flows entirely inside
the Mach cone, and a solution of the type II for the flows partly
inside, partly outside.

Under this presupposition, the solutions of the type II are, at a
first glance, rather tempting; perhaps certain authors were thinking of
these solutions when they exposed the condition of the subsonic trailing
edge which could be stated in the following manner:

Since the tangent to the trailing edge forms with the flow an angle
which is smaller than the Mach angle of the flow, one must write on the
corresponding trailing edge the condition of Joukowsky in order to be
sure that the velocity remains finite (see for instance ref. k).

Now the solutions corresponding to the formulas (III.73) and (III.T5)
seem to satisfy these conditions. And as we remarked before, these
flows show, behind the trailing edge, actually a character which reminds
one of subsonic flows.
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We do not want to definitely reject these flows; however, we have
to make three remarks.

1. As we have stated that the solutions with finite pressure along
the trailing edge are not possible for the symmetrical problems, the
pressure cannot remain finite in the case of a flow of the type II
around a cone having thickness.

2. It would be dangerous to link the solutions of the type II to
the "subsonic trailing edge" since, if the wing is entirely outside of
the cone (I'), there exists still another solution which yields a finite
pressure on O Ay and gives rise to a surface of discontinuity between

Ox) and O Ay: It is the solution Ul(Z) visualized at the beginning
of section 3.2.4.3. One has, in fact, under this hypothesis

() = (oo o - on eoat - 2 +

ia 2
——=—1lcos 67 logll + Z* - 2Z cos 6 -
n sin 92[ 1 g( l)

cos 6o log (l + 72 - 22 cos Gzil

which gives in the region comprised between Ox; and O A equal
values of v

¢4

_EE-G—Z(cos 6z - cos &)

If one adopts for such a cone the lifting solution of the type II,
one finds that the velocity remains finite at the trailing edge, even
under the hypothesis of a cone of nonzero thickness.

3. Adopting, still by virtue of the principle of continuity, the
type II for the lifting solutions in the case where the bounding genera-
trices are on the same side as Oxj would lead us to a restriction of

the range of the study of the flows with infinitely small cone angle
made in chapter II; for this problem, such as it has been posed, would
no longer be valid in the case where the contour (C) in the plane 2
no longer contains O 1in its interior. In contrast, we already have
had occasion to state that the results of chapter III are in complete
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agreement with those of chapter II (see section 2.2.8); this statement
is valid for the case of any figure whatsoever.

We may conclude that, according to the actual state of our knowl-
-edge, 1t does not seem imperative to adopt the viewpoint of the solu-
tions of type II. In our opinion, only an experimental study can indi-
cate where the theorist must place the singulerities; the viewpoint
adopted in this chapter seems to us to be the most natural one. It
becomes required in the case where O0x; 1s comprised in the angle 0 4y

and O Ap; in the opposite case, if in one way or another our knowledge

of the physical phenomenon should widen and lead us to a change in our
hypotheses on the singularities, it will still be easy to obtain the
desired solutions, provided the conical character of the flow is main-

tainedul.

blgee Appendix No. k.
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CHAPTER IV - THE COMPOSITION OF CONICAL FLOWS
AND ITS APPLICATION TO THE AERODYNAMIC

CALCULATION OF SUPERSONIC ATRCRAFT

We shall show in this chapter how the conical flows studied in the
previous chapter and possibly the homogeneous flows defined in sec-
tion 1.3 of chapter I permit to study, at least in certain particular
cases, the various elements of a supersonic airplane (fuselages, wings,
controls, etc.) by "superposition" if one can apply the general method
of linear approximations. Our aim is not to furnish all possible appli-
cations nor to give all the formulas the constructor may need. We
shall, rather, insist on the principles of such a composition; we shall
give the simplest and most significant results and, more specially,
those which, at least to our knowledge, have a character of newness.

We shall voluntarily reserve the results of technical character for a
later publication.

Such a superposition is justified by the linear character of the
fundamental equation (I.10). The simplicity of the following arguments
frequently results from the rule of "forbidden signals" which we have
stressed already in section 1.1l.k4.

4.1 - Application of Conical Flows to the

Calculation of the Wings

In his fundamental memorandum, often quoted above (ref. 4),
Th. Von Kdrmén indicates that the theory of conical flows permits the
investigation of wings the profiles of which are formed by straight

linesuz. We intend to show 1in this paragraph that one can investigate
a wing of finite span and with a curvilinear profile by means of compo-
sition of conical flows. Like the problems of conical flows (compare
chapter III), a wing problem may be divided into a symmetrical and a
1ifting problem.

We shall note 8+(xl,x2> and B~ (xl’x2>’ the 1nclinations of the
top surface profiles (xs = +O> and bottom surface profiles (x3 = —O)

hzThe subject of a certain number of memoranda is the study of
wings with polygonal profile. One must then superpose a finite number
of conical flows. The most recent and most complete investigation of
this problem is the one by A. E. Pukett and H. J. Stewart (ref. 30).
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of the wing investigated, and we shall put (compare fig. 56)
3t = -i + of 57 = -1 + o~

with 1 representing the general incidence of the wing (one will define
it as the incidence of the chord of one of the sections). We shall then
put

Jo(xl,xz) = +a” '2* a” @ =2 = -

In the case of a purely symmetrical problem
i=20 Jdo = 0
In the case of a purely lifting problem
a =0
Let C,= and Cp+ be the pressure coefficients on the upper side

P
2 and the local Cx

and lower side of the wing. The local ¢ of a sec-
tion parallel to Oxj,x3 will be defined by (compare fig. 56)

gy = f ' (cp™ - cpF)axy

mm

ey = Lm ' (cp*" - oy Yax,

Designating by Cp(l) and Cp(z) the pressure coefficients obtained

in the study of the symmetrical and lifting problems, the superposition
of which gives the general problem investigated, one has

CP+ = Cp(l) + Cp(z) Cp™ = Cp(l) - cp(z)




170 NACA ™ 1354

and consequently

c, = cz(z)

¢,(2) being the local c, of the lifting problem and

f | cp) (ot - a)axg + f | cpB)(-21 + a* + a)axy
mm mm

zf CopMa ax + zf 0p(®) (w1 + gg)axy
mm mm

ey (1) + ¢ (2)

cx(l) and cx(z) designating the local ¢, of the symmetrical and

lifting problemsu3.

Designating by C, and C, the total-1ift and drag coefficients,
one will, of course, have

Cz = Co(2) Cx = Cx(1) + ¢ (2)

One sees thus very clearly how a general problem is divided into a
symmetrical and a lifting problem. One may say, figuratively speaking,
that the symmetrical problem investigates "the effect of thickness'
and that the lifting problem investigates "the effect of curvature and
incidence.” We shall treat these two problems successively.

430ne could put: cx(z) = c'x(2) + ic,, noting that
c'x(e) = 2u/‘ ' cp(2)j0 dx;. The local cy is, therefore, the sum
mm

of cx(l), drag due to the thickness, c'x(e), drag due to the curvature,
and of 1c,, drag due to the incidence (induced drag).
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4.,1.1 - Symmetrical Problem

4.1.1.1 - Rectangular wing with symmetrical

profile and zero 1lift

4.1.1.1.1 - General remarks.- The projection of the wing is a rec-
tangle (R): ABA'B' (compare fig. 57). We shall put

AA' =BB' = 1 AB = A'B' =l

The problem is to find a flow such as to make the value of the
normal component w 2zero at every point of the plane X3 = 0, except

in (R). Furthermore we shall, for a start, assume that the wing cross
section is constant for the entire span. This profile, symmetrical
according to hypothesis, will be defined by the function a(xl) which

gives the value of the inclination of the profile (supposed to be small)
toward the axis of the x7; w will therefore assume the

value ot = a(xl) on the upper side (x3 > O) of the rectangle ABB'A',
and the opposite value w~ = -a(xl) on the lower side (x3 < O).

In order to solve the problem, we shall compose conical flows the
vertices of which are situated on the sides AA' and BB'.

In order to simplify the notation, we shall call -EL(M,G) the

elementary symmetrical conical flow which has its vertex at a point M
of the plane Ox)xp (compare fig. 58) for which w is zero outside of

the quadrant limited by the semi-infinite lines parallel to Ox; and Oxp

issuing from M; w 1is equal to the constant <& oon the upper part of
this quadrant and to -a on the lower part. CS(M,a) will designate

an analogous flow where the axis Oxz will have been replaced by its

symmetrical counterpart. Such a flow has been_investigated in sec-
tion 3.2.3.1. If one designates the angle xXMP by ¢, the for-

mulas (III.59) show that the pressure coefficient CP is given by
Cp = 2all 1 ppe sin(p tan ?) |B tan.@l <1 (1v.1)
Bia 1
Cp=0if ptan® < -1 Cp=-zﬁ—°“ifﬁtanq)>l
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4.1.1.1.2 - General principle of the superposition.- Let us visu-
alize, first of all, the superposition of the following flows

_C)SIZA,CL(OH and EI},q(oﬂ

The resultant flow gives in the plane X3 = O the values of w indi-

cated by the figure 59(&). If we now subtract the two-dimensional flow
about & dihedron of the angle 2x(0), it is disposed symmetrically
with respect to the plane Ox;xp and has Oxp as edge; the semi-

infinite Ox; 1s inside of the dihedron, and one obtains in the
plane x3 = +0 the values of W indicated by the figure 59(b). This

gives us the principle of the composition. One will obtain the desired
flow by superposing conical flows of the type Cg the vertices M of

4-_
which will be situated on AA', conical flows of the type Cg the ver-

tices of which will be situated on BB', and by subtracting suitable
two-dimensional flows. It will be possible to schematize the flow in a
precise manner as follows

f To(M, da) + f T, da) - EE,(xl):l (Iv.2)
AR BB’

with Ela(xl)l designating the two-dimensional flow about a wing of

infinite span the profile of which is identical with the profile of
the given rectangular wing.

In fact, one verifies immediately that the flow, symbolically
defined by the formula (IV.2), satisfies the given boundary conditions.
We want, nevertheless, to specify that the integrals of this formula
ought to be understood in the sense of Stieljes, in order to understand
the case where the function a(xl) will represent discontinuities of

the first kind. Such discontinuities exist, in general, at the leading
edge AB and at the trailing edge A'B’'.

4.1.1.1.3 - Study of the flow wa -8;(M, da) .- In order to make
AA'

this investigation, we introduce the axes Axy, Ax parallel to 0xq ,

Ay coinciding with Ox5, and put

= xX By . x) -
% = x ﬁg = y* o (x ) = alx)
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The section of the Mach cone behind the point A is formed by two
semi-infinites which have as equations

X+ y¥=0

Let (xx,yx) be the reduced coordinates of & point P of the

plane Axy (fig. 60). We shall suppose xX* <1l. If 0 < x* < y%, the
point P 1is outside of the Mach cones behind all points M of the
segment AA'; consequently, according to equation (IV.1l)

2 P* 2 x X _2  x

If now O < y¥ < x%X, the point P is outside of the Mach cones of
the points of the segment PPy, but inside of the Mach cones of the

points situated on APy, Py being the point of AA' of the

abscissa xX - y¥. Besides, the conical flows, the vertex of which is
on PpA', have no influence on the point P. Consequently, the pressure
at the point P is written, according to equation (IV.1)

, xXoyX gx X
Cp = £ L + Arc sin —2——}da®(8) + 2 daX(t)
Bt Jo 2 x¥ B

or

C. =

[ () - (x%,5%)]

w |+

y (IV.3)

x¥_y¥
P(xx,yx) = ax(xx - yx) - %L]; Arc sin —EZf—E daX (&)

X -

This formula, set up for the case where O < y¥ < x¥, may be extended

to the case already studied 0 < x¥* < y¥ since ‘a may be considered
zero for the negative values of the abscissa.
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One can now calculate the drag of the section yx
1
) =2 [ oy (arartine

Consequently

1 1
ey (v%) = %j{; o*2(E)at - %fyx aX(&)a® (& - y¥)at +

1 -y x
i CLX in X
Bﬂf (g)dgj; Arc s E da®(n)

or, changing the order of integration in the last term and putting

1
f cx,xz(E)dE, = ol
0

1
Fyx=2f oF(t)a® (& - y¥)at -
) -2 ], (& - )

W

1- 1
&f . daX(n)f Arc sin L oX(E)at (1V.4)
"Jo v -

ex(r) = B - Lp(y¥)

According to our conventions, if y¥ >1
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Such a section actually behaves like the section of a wing of
infinite span which is quite obvious according to the rule of forbidden

signals. We note in addition that

—2
e, (0) = 3%—

thus the drag of the section y¥ = 0 1is half the drag of the same sec-

tion at infinite aspect ratio.

We want to point out another remarkable result
1 2
| exlyare - 12 (17.5)
0

that is, the mean value of the drag in the region 0O < y¥ < 1 where
the cx(yx) is not constant is equal to the value of the drag in infinite

flow.

In fact, first of all

1 1 1 g
f dyxf aX(&)aX (E - y‘x)dﬁ = f a,x(E)dﬁf aX (E, - y-x)dyx =
0 v 0 0

1 1
f aX(t)ex(e)at = L[ex(e)]®| = o
0 2 0

if one puts

x
e*(x) = L}j a*(E)at
0
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On the other hand

1 1 E-y*
L[\ dny/‘ Gx(g)dEL/w Arec sin —Xf—— daX(n) =
0] yx 0 E -7

1 3 £-1 e
L[\ ax(E)dgL/‘ da?(n)L[‘ Arc sin dy*
0 0 0 £-n

If we put in the last integral

y¥=(t -n)sin t

the preceding expression becomes equal to

(% - 1> j;l aX(gmgfog (¢ - n)doX(n) = (g - 1) ng E*Z(E)at -
1
j; aX (&) I:ECLX(E) - ex(ﬁﬂdé =0

The formula (IV.5) is thus justified.

4.1.1.1.4 - Study of the rectangular wing with constant profile.-
We shall call the quantity pr, which we shall note 27g, (BX = ZqO),

the "reduced aspect ratio" of a rectangular wing.

We shall designate by t the "reduced chord"

and we shall put (compare fig. 56)

‘|'l=.B_}(_2
1
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In applying the formula of composition (formula (IV.2)) one sees
that the pressure coefficient at a point of the rectangular wing is
given by

Cp(t,m) = z“—};(tl - %E’(t,no +n) + P(t,ng - nﬂ (1V.6)

P 1is the function defined by the formula (IV.3). The drag of the sec-
tion 7 1s given by

_ 1
ce(n) =4 -%2- - %J; [P(t,'qo + 1]) + P(t,'qo - nﬂax(t)dt

However, by definition
1
2 P(t,u)aX(t)dat = F(u)
0

F being, besides, the function defined by equation (IV.4). Consequently

cx(n) = l‘—-‘gi - %E‘(ﬂo + 1) +F(ng - n):l (Iv.7)

we remark that if 7ng5 > 1, that is, if A >-%, there is always at least

one of the functions F =zero; in this case the c¢y of the sections

e

close to the center is equal to —E—. This is an immediate consequence

of the principle of forbidden signals.

Now we can finally calculate the total drag which we shall fix by
the coefficient
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If one puts

v
o(v) = L/1 F(u)du
0

one sees immediately that

_ k1
CX = —B—' - ETB Q(ZT]O) (IV.B)

However, the result obtained by the formula (IV.5) amounts to
stating that

o(v) =0 if v >1

Consequently, the drag of a rectangular wing has a value independent

2
of the aspect ratio and equal to &%—, for geometrical aspect ratios A

greater than %.

Summarizing, one may say that the éomplete investigation of a sym-
metrical rectangular wing of zero lift amounts to calculating the func-
tions P, F, ¢ which are all calculated by quadratures.

4.1.1.1.5 - Applications.- 1. The profile is a rhomb; in this case

oX(t) =ag if ¢ <%

-aq if t>% a=a.0

aX(t)

We shall now calculate the function F(yX), defined by equa-
tion (IV.4). For this purpose we remark first that

0?1 - 3y¥) if ogy*g2
<¥yEg1

-ao?(1 - v¥) 1 2

yx
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There remains to be calculated
1-yX 1 X
o da®(n) | . Arc sin 24— oX(t)at
0 y=4n E -1
However,
o (a - n)Are sin o +
a -~

b
Arc sin < dt = (b - n)Arc sin
a E - q b -9
yxArgchb_'_Tl._Argchu)
= =

as one sees immediately, integrating by parts.
is subjected to two discontinuities, the

If 0S¥y <z o)
first for n = 0, the contribution of which is

an? <;-Arc sinZyx+yxArgché%x--§yx>- (’*rc sin y* -

-lz-Arc sin Zyx> - yX<Arg ch # - Arg ch 2—:;3(—)

, the contribution of which is

o

the second for 7

Zqoz % Arc sin 2y% - y¥ % + y*Arg ch Ei%}

If y* >»l, only the discontinuity for n =0
contribution of which is
-aoz Arc sin y¥ - y¥ % + y*Arg ch jﬁ]
y

comes into play, the
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If one assembles these partial results and puts

Y(y¥) =l<Arc sin y* + yXArg ch—]-'—> for 0<y¥<1
n Vo
? (1v.9)
Y(y¥) = % for y¥>1

one sees that one may write in a general manner
F(y¥) = uaoz[% +Y(5*) - ZY(ZyX):I
and consequently

)_'_002
(n) = -75——[% - Y(no + n) - Y(no - n) + ZY(ZnO + 2n) + 2Y(2no - Zni]

(1v.10)

Figure 61 gives the variation of cy(n) for two values of 7g.

For knowing, finally, the total drag it suffices to calculate the
function @(u).

Now
u
Y(yx)dyx =< u D(u)
0 2
with
- 112

D(u) = 1 - Y 2 Arc sinu +
2 u
wArg ch £ if 0<ug1l

u

D(u)

1
=

if uzpl
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Hence

u
o(u) = ll»aoz[ |:1~+ D(uﬂ -u D(ZuZI (Iv.11)
2
Consequently, applying equation (IV.8), one obtains
haoz
Cy = Tl:z D(kng) - D(znoil (1v.12)

One will find in figure 62 the curve giving Cy as a function of

the reduced aspect ratio.

The curves of the figures 61 and 62 have already been given by
Th. Von Kdrmdn (ref. 4), but this author does not give any analytical
Moreover it seems as if the results Th. Von Kdrmin's had been

formula.
obtained by application of the method of "acoustic analogy." The curve
given in figure 61 may also be found in a memorandum of Lighthill

(ref. 31) who utilized the method of sources.

2. The profile is formed by two symmetrical parabolic ares; in

this case one must put

oX(t) = (1 - 2t)

€y characterizes the thickness of the profile.

The problem consists in calculating the functions F(yx) and ©0(v)
One finds after a few integrations

defined in the previous paragraph.
of elementary character

2
ueg E\rc cos y* + y¥(y*2 - 3)Arg ch SrlE + yx,’l - yxz] (1v.13)

p() - %5

and
2 r‘—————‘
*<o (%ih - 3ifz)Arg ch ﬁ; + y*Arc cos y* + ZEE—&E:—ZfE

(Iv.14)
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On the other hand

2

€

e = O

3

One can clearly verify that
2
2¢
F(0) = 30 = 262 F(1) = 0 o(1) =0

In figures 63 and 64 one will find the distribution of cy oOver
the span for a wing of reduced aspect ratio Zno = 2, and the variation

of C4 (total-drag coefficient) as a function of the aspect ratio.

4.1.1.1.6 - Case where the profile is variable in span.- It is
possible to calculate the symmetrical rectangular wing at zero 1ift in
the general case where the profile is variable in span. We shall here
be satisfied to examine the relatively simple case where the profiles
along the span are deduced from one another by affinity; the ratio of
the affinity varies with the span. We shall assume that the wing of

reduced span 21g has a local inclination of the form k(n)a*(t) at a

point of reduced coordinates 7, *t.

The function k(n) must of course satisfy the usual limitations
so that the problem posed can be treated by means of linear approxima-
tions. Finally, we shall assume the function k(n) to be even in M.

Let us first of all remark that the wing of reduced span 27, the
profile of which (which is constant along the entire span) is defined by

the function aﬁ(t), causes outside of the wing, at a point of reduced

coordinates t, yx(yx > n), a pressure coefficient
Cp(t,57%) = %E(’c,y" =) - P(t,5 + n) (1v.15)

P is the function defined by equation (IV.3) as one sees reassuming the
arguments of the sections %.1.1.1.3 and 4.1.1.1.4.

One will now obtain the desired boundary conditions by superposing

a succession of rectangular wings which are symmetrical with respect to
01xy, of equal chord reduced to 1 and of variable reduced
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span Zn(O <n < no) for which the profile remains constant in span.

This is justified since k(n) had been assumed to be even.

At a point (t,yx) the pressure coefficient is written

¢y (6,5%) = %E“"(m(yx) v [ R+ )axta)

fy:o P(t,n - y¥)dk(n) - J;yx P(t,y* - n)dk(n)

A1l these integrals are taken in the sense of Stieljes.

One will obtain a simpler formula by putting

n
B(tJV:nO) = _L © PE:G(T] - Vﬂe dk(n) (IV'16)

¢ being defined by the equality
e(n -v) =|n - v|
In this case
Cp(6,5™) = £ X (e)x(y™) - %E(t,yx,no) + g(t,-yx,noﬂ (1v.17)

This formula is reduced to the formula (IV.6) in the case where
k(n) = 1 over the entire span.

The drag of the section yX is easily obtained

cx(yx) = % kZ(yx)az _ ﬁ%}-{l[g(}’xﬂ]o) + E(-yx,noﬂ (1Iv.18)
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by putting
1
E(v,qo) = zf g(t,v,no)ax(t)dt
0
1 !
_f a,x(t)dtf 0 P[t,e(n - vﬂe dk(n)
0 0
1 1
_J; ° dk(n)fo P[t,e(n - vﬂ oX(t)dt

whence the formula

1
F(v,np) = -J; ° Fl:e(n - VH e dk(n) (1Iv.19)

F is the function defined by the equality (IV.4).

Thus one can see that the pressure coefficient and the local-drag
coefficient are expressed by formulas analogous to those obtained in the
case where the profile is constant under the condition that the func-

tions P(t,yx) and F(yx) are replaced by weighted averages, B(t;v:ﬂo)
and E(v,no), defined by the formulas (IV.16) and (IV.19).

Finally, the total-drag coefficient 1s obtained immediately

whence
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As an example, we shall suppose k(1) to be defined by

k(n) =l-’?_o - (o<n<ng)

One will then have

1 1
F(vsng) =-J;OF e(n-VHeﬂ(n)=+L°F e(n'vﬂ'ﬁ%d"

If v 1is positive

v n
0
F(ving) = - = F(v - n)dq + Lf F(n - v)an
Todo ToJv
v
M-V
. F(u)du + Lf ° F(u)au
Todo Modo

- %E@O - v) - ¢(v£l

v
o(v) = f F(u)du %being the function introduced before in sec-
0

tion 4.1.1.1.4.
1
V = =V

If Vv is negative:

F (v =L T]OF( + v')a
F(vs1p) = 5ds 1 n

1
'I’]O+'V'
= L F(u)du
ﬂo v

= %Ep(qo - V) - qa(_v;_-l
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whence

() - i Z—E)zaz - g%)ﬁ%o[% (10 - ¥%) + 8 a0 + ) - 26(s%)]

(1v.20)

Let us recall that o(v) =0, if v » 1.

It is then easy to make applications of this formula in the case
where the profile is a rhomb or lenticular formed by zero parabolic
arcs.

One will find the curve which gives in the first case the varia-
tion of ¢y as a function of ¥X, for a reduced aspect ratio 75 = 2,
in figure 65.

4.1.1.2 - Study of the sweptback wing

with constant profile

Without investigating the sweptback wing as thoroughly as the
rectangular wing, we shall show that one may, without essential diffi-
culty, apply the method used for study of the rectangular wing for the
sweptback wing of constant profile the plan-form of which is schematized
in figure 66. We shall suppose that the plane Oxlx3 is a symmetry

plane for the wing. With 7 designating the angle of sweepback, it

is obvious that we shall have flows of different type according to
whether the leading edge AOB will be outside or inside the Mach cone
of 0. One has become accustomed to say that in the first case the
leading edge is "supersonic” while it is "subsonic" in the second case,
thus recalling that the velocity component normal to the leading edge
is higher than sonic velocity in the first case, lower in the second.

The number ¥V, defined by: B cot 7y = %, (v <1 characterizes the case

where the leading edge is outside of the Mach cone, Vv > 1, in contrast,
the case where it is inside) will, therefore, be an essential parameter
in the investigation of sweptback wings.

4.1.1.2.1 - Case where V < 1l.- We shall put in this case v = cos 4.
We shall define, as for the rectangular wing, "the reduced aspect ratio"
2ng (compare figure 66) by the relation

2ng = Br

if ) designates the span of the wing taken along Oxp.
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For simplification we shall assume that the profile chord is taken
as length unit, and that the profile is defined by the function a(xl),

with xp varying from O to 1. It is obvious that the desired flow

will be obtained by a superposition of elementary conical flows which
one may note schematically

—> «—
Cy(M,da,8) - Cs(M,d0,0) - Cy(M,da,8)
00" BB' AAY

CS(M,da,G) designates a flow completely bisecting the Mach cone,
admitting the plane Oxlx3 as symmetry plane (section 3.2.2);

—>

CS(M,da,e) designates a flow partially inside of the Mach cone; the

sign —> indicates the direction of the bounding generatrix which
forms with Ox, the angle 7; the other bounding generatrix is supposed

to be parallel to the wind. Because of the symmetry it will be suffi-
cient to study the region of the wing where x5, > O.

It will be convenient to put
y* = Bxg
Xx] = x + y*cos 6
A conical flow with the vertex M0<xl =&, x5 = O), of the type
C(Mg,a:,6)

causes (compare formula III.S53) the following pressure field in the
region yX > O:
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c.o=%a_1  are sin sin © if 0<t <1
P Bn sin 6 2 >
Jl - t~cos“6
y¥
t being defined by t =
x - & + yXcos @ >
Cp = —2% if 1<t<
B sin 6 cos @
Cy =0 if ¢ > —=&
P cos 6
)

At a point (x,yx) the pressure coefficient due to the flows

Cs(M,da,0) is equal to
00!

—

—2_ _ja(x) - G.E{ - yX¥(1 - cos Gﬂ +

B sin @

-yX(1l-cosb)
sin G(X - £ + yXcos 9) aa(E)| =

\kx - £)(x - & + 2y¥cos 6)
|

Arc sin

A oo

B—S?TQE(X) - Q("’y"’e)]
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putting

Q(x,—yx,e) = a.E - y¥(1 - cos GEI -

sin 6lx - & + yXcos 6) da(&& _

x-y*(1l-cos9)
Arc sin
\I(X -&)(x - & + 2y¥cos 0)

2
7
0
~y*(1l-cos8
2- Xy ( COS ) Are cos [Sin G(X - g + yxcos 9)] dq.(g)
T 0 \kgi- g)(x - & + 2y*cos 9)

Let us note that
Q(x,yx,e) =0 if y¥(1 - cos 8) > x

and that the same holds true also in the case where the sweepback is

Zero (9 = 1).
2

1
>
10 7 T 7 cos ©

For simplification, we shall henceforward assume

(which will always be verified if ng > 1), that is, that the edge AA'

has no influence whatsoever on the wing region x, > O.

—_—
The contribution due to the flows ij C(M,da,8) is very easily
BB'
The pressure coefficient due to

obtained from the formula (III.S58).
these flows may immediately be written

P(X,Tlo - yx’e)ﬁ:iL_n_e

Cp
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if one puts
P(x,yx,e) = CI.E{ - yX(1 + cos eil -

xX-y¥(1+cos8) 2
Qf Arc sin[M - cos G:Ida.( E)
*Jo x - &

(Iv.22)

If 6 = %, one falls back on the function P defined by the for-
mula (IV.3); on the other hand, P(x,yx,e) is obviously zero if

y¥(1 + cos 8) >x
Finally, with the reservation that

1
> —_
"0 7 T 7 cos 6

one has at a point of the wing

C, = —i—-—EaX(x) - 2Q(x}yx}6) - P(X,T]O - yx:G)J (1Iv.23)

P B sin @

The local-drag coefficient is immediately obtained

ex(7¥) = —E - a(y,0) - 10 - ¥

—Bsine B sin 6 B sin 0
(Iv.24)



putting
G(yx,e) = % : a(x)dx *i-coss) Arc cos —SiB §£§ - & + y¥eos 6) éa(ﬁ)
v¥(1-cos6) 0 \](x - g)(x - £ + 2y%cos 6)
- (Iv.25)
L/”l
F(y*,6) =2 a({x)alx - 1 -
(y ) X (14c050) (x) [ v*(1 + cos e)de
1 x-y¥(1+cosb) .
%Llw a(x)dx Arc sin[%giéggg - cos é]da(g) (Iv.26)
y¥(1+cos6) 0

The calculation of the total drag offers no difficulties. We shall content ourselves with the
following remarks:

1.
1

l+cos6
JF F(y*,0)dy* = 0
0

‘This result is established in the same manner as in the case where 6 = % (compare sec=-

tion 4.1.1.1.3).

H©SET WL VOVN

16T
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It signifies that the effect of limitation of the span does not
modify the total drag.

2.
1

l-cosh
b[‘ a(y*,0)ay* = 0
0]

In fact, this expression is equal to

x-£§
1 X 1-coso
a(x)dx da(t) Arc cos —SiB 6(x - & + y¥cos Q) ayX
0 0 0 \l(x- §)<X— ¢ + 2y*cos 6)

The last integral is written

1

(x - &) Are cos sin 8 dat
1 - t2c0s2g (1 - t cos g)a

0

If one puts

yX
X - £+ yXcos 6

t =

N S
1 - cos 6
the drag of the investigated wing is identical with that of the yawed
wing of infinite span

the result is then immediate. It signifies that if Mg >

_ k45~
Cx B sin O (1v.27)

3. If 6 = 0 (the leading edge is situated on the Mach cone of 0),
the given formulas present an indeterminate form. Nevertheless it is
very easy to eliminate the indetermination. We shall, in particular,
calculate the total drag. The value we shall obtain is very interesting
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because it corresponds for a given sweptback wing to the maximum of the

total drag when the Mach number varies.

If 6 tends toward zero,

_l 3 Arc sin sin
sin
1l - t2cos29
has as a limit
1 x - & +y%

\Ji-te \](x—g)(x-§+2yx)
> =; since our purpose is calculation of the total

We assume 7
0
The desired total drag which we

BB' may be neglected.

drag, the edge
shall denote by meax is written
Cxmax = Bﬂ dnylq o"(I’C)dxk/-] x -ty da, (&)
o \kx - 6)(x - &+ 2y%)
X—§+yx dyx

~ By

1 X o
qu a(x)de]q da(g)L/‘
o o o \x - 8)(x - &+ 2y%)

whence, carrying out the last integration

L2 Tolax - ) + nglaa(e)

1 X
_ _ k4
Cxmax 3Bnnof OL(X)dxf\J —
0 0
(Iv.28)

One thus obtains a very simple formula giving the value of the total Cy

when 6 = O.
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If the profile is a rhomb, one sees, writing

1 1
__8 fx’-“z"o[ :,
meax - 3nBng da(é)tjq ___;;TT?T__-Z(X - £) + moja(x)ax
0 3

that
hap® 2 1
C = — ho(=) - o1
max B 3w, () ()
putting
v x + 27 1 3
Q(u) = ’——fg——Q(ZX + 7 )dx = uz(u + Zno)z
0
whence

¥

(1 + lmo)E - (l + zno)z
o

meax = (Cx)oo -3%; (IV'29)

In figure 67 one will find the variation of (Cx) as a function
max

of U

If the profile is formed by two parabolic arcs,
alx) = ¢l - 2x)

and
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or

8602
Cxay Spng El(l) - 6J(1) + 6n0K(1) + <:>(1£|

putting

X
3
I(x) = f (2 )zdx = E e+ Zno)[" + 210)% (x - o) *+
0

o

o+

x
J(X)=f xx+2nodx l,xx+2'qo l:x+2-qo ____x+2no_

0 ( 3 ( ) ( )
31]02] -0 log (ng + x + \x + 2ng)x

K(x) = f
0]

o2 ng + x + 4x(x + 21q)
> log

o

1
(x + Zno)zdx = % (x + Zno)(x + no) -

NHJ

Hence

e}

4 1+ 7 + Jl + 27
meax = ;: [\,l + ZnO(nO + %) (l - T]O) + n03log 0 O]

(1v.30)

One will find the corresponding curve in figure 68.
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4.1.1.2.2 - Case where Vv > 1.~ We shall begin by examining the
case of an infinite half-wing inside slip (compare figure 69).

It is convenient to put

=_l__iﬁ

2¢

v

The flow is obtained by a superposition of conical flows symbolized by

f @, (M,da,c) (1v.31)
00'

—_p
with CS(M,da,c) designating the elementary flow Investigated in section
3.1.2.2. in the case where b = 0. If one puts

X
b = Y - _2ap (1v.32)
x - &+ vyx 1+ p2

the pressure coefficient is given by the formula (IT1I.23) which may also
be written

cp=___2L___10gl_:_C_9
C -
P Jvz -1 P

This formula is valid for [p| <1. If lpl >1, one has Cp = O.

One sees immediately the essential difference compared to the cases
investigated before: a conical flow with the vertex (£80) can influence

a point (x,yX) for which x < &. 1In particular, the trailing edge will
play a role in the calculation of the pressure. Finally, if x = &,

p = ¢, the Cp of the corresponding conical flow becomes infinite. If

the method remains exactly the same, one must also expect a few addi-
tional difficulties.

The pressure coefficient at a point of the wing will therefore be
written
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1
|
b x+(v-1)y*
ft 1 -
I Cp(x,yx) = ——z——f log Plaa(t)
| B Jvz - 1Y0
N
;
f p 1is of course defined by the equality (IV.32).
}
The cy of the section y* is then written

=~ "lda(t)

l v
4
e (y¥) = —2— ot dtL/1 lo
& Bﬁ~J;§—:_It/; ) 0 i

y¥ =0, p = 0; and consequently

t+(v-1)y¥ ll - cp

One will notice that, for

Cp(x,O) = _eaux) log % = _2alx) log[} + Jvz - ]
B (V& - 1 Bn\fvz

As in the case of a wing of infinite span, the cy
Likewise

depends only

on the local inclination of the profile.

e (0) = 452 1og(v + W8 - 1) (1V.33)

B
advé -1

The calculation of the function cx(yx), for y¥ # 0, presents no

theoretical difficulty whatsoever. We shall now calculate the drag of
the infinite half-wing, and shall show that it is finite in spite of the
infinite dimensions of the wing. Assuming X +to be this total drag,

we shall put
—

Our purpose is the calculation of C,.
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The desired value of C, will be the limit, if it exists, of the

integral

yo* 1 x+(v-1)y¥
x N
I(y = — ay* a(x)dx log
0 0 0

when yox increases indefinitely.

da(t)

1l -cp
c-p

In order to calculate this triple integral, we shall replace the

ensemble of the variables y*,x,t by the variables x,t,p; the func-

X
tional determinant Pﬁz—ifiél is equal to
D(x,¢,p)

ayX _ 2e3(x - £) (1 - o?)
de (o - ¢)2(1 - pc)?

This expression one obtains from equation (IV.32) if one writes this
equality in the form

_ 2pc(x - E)
a (¢ - p)(1 - pe)

The volume in which the triple integral must be calculated is
represented in figure 70. One can write



1 X pn(x-E)
0 2) 002
I(yox) = ....___ﬁ'.._-----L/-1 a,(x)de/q (x - &£)da(t) log t - gp ( (l ;2? )Zc > dp +
2 2 - p -c l-cp
B x\‘v 1 0 0 0 )
1 1 1
_ _ n2)onl
f a(x)dxf (& - x)da(t) Log| - G = )2c ~ dp (Iv.34)
- -c)?(1 ~-c
0 < Dl(ﬁ—x) (p ) ( p) ‘
po(x - t) and pl(g - X) are defined, respectively, by the equalities
2 X W
o)
9 > = Y0 x>
- X
1+ Pg x - ¢+ V¥,
y
2p X
i - e E>x
l+pl2 x—§+VyOx
Then one will have to make yox tend toward infinity. Under these conditions, Py and

Y tend toward c¢j; but it is impossible to make the transition to the limit brusquely because

the triple integral then assumes indeterminate values. We remark likewise that, if the two
limits py and p; are replaced by two constant numbers, one smaller than c¢ and the other

HSE€T WL VOVN

66T
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larger than c, the triple integrals of equation (IV.34) will be zero

because
1 X
fa<x)axf (x - £)aa(e)
0] 0

1 1
L/“ a(x)dxtjq (¢ - x)da(t)
0 b4

Since one wants to calculate the limit, if it exists, of I(yox),

]
O

]
o

one will utilize the limited developments. Let us put

p=c(l +r)

log 1-ce log 1 - ct - cfr > .. ZCZCL = p2) >
¢c-p cr l-c Bc - p)(1 - pcﬂ
— 2 1 2
= Eftfza ;E(l + kr® + . . J

We designate the values of r corresponding to pp and Py by
ro and 1ry; in the integrals

0 2 2
0 1-c 2¢ce\l -
P 1(p - e)?(1 - pe)
and
_ 2 _ A2
ljj 1log 1 cp ac (12 o) ) _ dp
N ¢ =P i(p - c)?(1 - pec)

one may neglect the terms which are constant with respect to x and ¢,
or infinitely small with respect to ry and ry. Thus there is every

reason to maintain only



e
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r
0 2 2
2 - 1 log l-c _ 2c ile ar
1 - e2 p2 cr (1 _ cz)z r
and
2 2
f zz-lélogl;rc - e ar
ryl-cér (l _ 02)
which gives for the first
r
—2c |1 jog 0 + L= ac loglrol
1 - c2|%o 1-c2] o (1. .2)

and an analogous expression for the integral Uf
r
1

But if one puts

£ 1+ £ L+ 4+ ..

r=£2-C=_
© Jvz -1

and one obtains an expression of the form

% log ¢ + % + C log ¢ + .
the dots indicate terms not infinitely large which may be neglected,

according to a remark made before.
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The term in %log € gives in the first triple integral

1 X
Yo o(x)dax doc(e)loglxu §|
° Jo 0

and in the second (the one which corresponds to pl)

1 1
yoxf G,(X)dxf da,(ﬁ)loglx - EI
0 b4

Hence, summing up

1 1
Yoxf a(x)dxf log|x - t|da(t) = f f “(x)“ég) dx dt = 0
0 0 x -

The term in brings into the first integral the contribution

1 b'd
Yoxf a(x)d.xf da(t) = TRy
0 0

and into the second

1 1
N f afx)dx f da(t) = -@yp*
0 X

Finally, only the term in log € gives a result which is nonzero.
Now

o=




O
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ind since

1 2c

1 l-CE

ve

one sees that one obtains

2 2 1
Cx = : ke §1,+ c ) a(x)dxhlﬁl loglx - EI(E - x)da(t)
er (1 - ¢2)? Jo 0

One may replace c¢ by its value as a function of ¥ which gives
the simple expression

o . 1
Cy = 4y  cos<y sin ¥ L/\ a(x)dx\[\l (¢ - x)log’x - glda(g)
14 3/2
@.- M2c0527) 0 0
(1Iv.35)

Let us take, for instance, the case of the rhombic profile. One then
finds immediately that the double integral is equal to qoalog 2, This

result, in the special case of a rhombic profile, has been given by
Th. von Karman (ref. L).

If one takes the profile formed by two parabolic arcs
a(x) = (1 - 2x)

one finds as value of the double integral eg/h = e2, with e desig-
nating the relative thickness of the profile. With an equal relative
thickness and equal sweepback, the drags are in the ratio log 2 = 0.69
whereas one obtains for an infinite wing, straight or oblique, the
ratio 0.75. Thus one deduces that the rhombic profile is even more

advantageous for a sweptback half-winghu.

quf one compares the drags, at infinite aspect ratio, of a pro-
file formed by two parabolic arcs and of a rhombic profile, of equal
area, one finds that the first is B/h of the second. With a pronounced
sweepback, this ratio is equal to 0.92.
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If one wants to investigate a bounded wing, like the one repre-
sented in figure 71, one must add the end effect due to the edge BB'.
It suffices to subtract the flow symbolized by

-f ., (M,da,c) (Iv.36)
BB'

from the flow defined by the formula (IV.31). The pressure coefficient
due to the flow symbolized by equation (IV.56) is written

Cp(x,yx) = a da(t)

Llwx-(1+V)(Vo'yx) logll _ cp
0

2
ﬁndvz -1
with

20 _ vX - g

1402 x -+ v(y* - ng)

with CP being zero if x < (1 + v)(no - yx).

If 79 > 1 1 " the edge BB' does not influence the point O’.
+

In this case it may be easily shown that the contribution of the flow
(equation (IV.36)) to the total drag is zero. 1In fact, this contribu-
tion is proportional to

1

1+v 1 x-(1+v)y' ¥
dy'¥ on(x)d.xf log
0 (+v)y'* 0

if one puts

1 -cp
E—:—E—ld@(i)
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One may make the change in variables used before which consists in

replacing y,x,8 by x,t,p; one obtains
2pcil - c2) 1log

a(x)dx da(t - &
-[; = f ()(x )fl(p—c)z(l-pc)g

which is evidently zero.
This justifies a remark of Th. von Kdrmén (ref. 4)

For wings of high-aspect ratio, one may adopt, without large error,

the formula (IV.35) for the total drag
The calculation of the drag of an infinite sweptback wing (fig. T72),

on the hypothesis that v > 1, is perfectly analogous to the one Just
It suffices to replace, according to section 3.1.2.2, in

performed.
the preceding formulas

1l-cp

c -0

1l + ep

c+ P

log + log

1l - cp
p

C -

by

log

Since
1 + 02

2¢c

= log

l+ cp
o)

log
c +

it is sufficient to combine the expression
cos?y

1

Mecosz7) /

L c -2
T

andvz -1 1+ c2 sin 7(1 -

with the coefficient of the double integral of the formula (IV 35)

However, one thus attains only the drag for half the wing (x2 > O)
one must therefore multiply by 2 in order to obtain the desired formula

c0327 1+2 sin27 - MecoseyL/’l a(x)dx‘le(g - x)loglx - Elda(g)
0 0
(Iv.37)

L
c. =2
X % sin ¥ (l Mzcos 7)5/
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According to the remark just made, this formula gives, for a sweptback
wing of high-aspect ratio, an approximate value of the total dragh5.

We shall borrow from the memorandum Th. Von Kermén's the figure T3
which illustrates the usefulness of the formulas found above for the
study of the variation of the C, of a sweptback wing of high-aspect

ratio with the Mach number (the profile is rhombic, the sweepback
angle y = 45°, and the reduced aspect ratio ng = 4). We obtained in

the course of this investigation the value of the C (point A of

¥max
the figure) by the formula (IV.29), and the portion of the curve from
B (formula IV.27). The dotted part at the right of the abscissa M = JE-
is calculated by that same formula. One sees that it indicates also
the behavior of the exact curve. Finally, for the values of M<K JE;
the dotted part corresponds to the formula (IV.37). It represents a
good approximation of the rigorous values, except for the immediate
surroundings of M = 2.

Here we shall stop the investigation of "symmetrical" wing prob-
lems. One sees that this method leads to simple results and that the
calculations are always elementary. The field of application may easily
be extended to more general cases (trapezoidal wings, leading edge cur-
vature, etec.).

4.1.2 - Lifting Problems

Study of the lifting problems is generally more delicate. In fact,
the boundary conditions furnish on the wing the values of w, but out-
side of the wing (in the general case) w is different from zZero; on
the other hand, continuity of the pressure is required which leads to
supposing (in pursuance of the hypothesis of linearization as noted in
chapter III) that u = O 1in the plane Ox1xp outside of the region (R)

occupied by the wing. The difficulty lies in the fact that, in the
general case, the boundary conditions bear up on two of the velocity
components.

4,1.2.1 - Problems where the condition u =0

may be replaced by w =0

The rule of "forbidden signals" permits to define a general class
of lifting problems where it will be possible to replace the

LL5Compare appendix No. 5.
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condition u = O by the simpler condition w = 0. This will be the
case for wings, the projection (R) on Oxjxp of which will satisfy

the following condition:

With C designating the contour of the plén form (R), the tangent
to (C) forms, at every point of (C), with Ox; an angle which is

larger than the Mach angle.

Naturally, such a contour (C) will present angular points. It
is understood that, at these points, each of the semitangents must
satisfy the condition stated. For the sake of abbreviation, we shall
say that this contour is entirely supersonic.

Let us consider a point M of (R). As we remarked in sec-
tion 1.1.4, the state of the fluid at M depends only on the perturba-
tions inside of the Mach forecone of the point M; this forecone cuts
off, in Oxyx,, a portion of (R) on which w is given, and a portion

of the plane Ox;Xp in which the general flow is not disturbed (sec-

tion 1.1.4) and on which u =v =w = 0. In order to calculate the
pressure at the point M, one may suppose that w = O outside of (R).
One may also say that, under these conditions, the upper and the lower
surface of the wing are independent. The solution of the corresponding
lifting problems is therefore perfectly analogous to that of the sym-
metrical problems visualized in the previous paragraph.

Let us assume, for instance, a flat plate of the plan form indi-
cated by figure T4, with the contour (C) being entirely supersonic;
the pressure at every point of this plate has been calculated in
chapter III. We intend to calculate the total C,. One has obviously

wo
1 2

Cz=—-S—f Cpr dCP

w

1

if one puts
X = Efa =f tan ¢ r =0

X1

with S being the area of the region (R). Let us put furthermore

A =P tan w; p =B tan wg P(x) =

P(x) depends uniquely on the trailing edge B'AB.
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One then obtains the formula

K
Cp=-=x Cp(x)P(x)ax (1Iv.38)
SJa
Let us recall that
2i 1 .
el = f 1<x<
B sin 0 * xS
. cos 8 - X - cos

c(x)=<_gl—.—l'-—-Arccos 0 + .1 Arccos—x——&
P B \sin 64 1 -xcos By sin 6y 1 - x cos 6y

. if -1 <x<+1
- %% gzlj;_ if A<x< -1
n
1

-

with 1 designating the incidence counted according to the usual con-
ventions.

In a recent memorandum, M. Snow (ref. 32) has applied this method to
the calculation of the total C, of a plate in the shape of a quadri-

lateral. We simply want to point out that, in a certain number of cases,
it is possible to calculate the integral (IV.38) very simply. This
simplification becomes apparent when P(x) is analytic. It is then
possible to use integrals in the complex field (variasble =z or Z).

Let us suppose to begin with that the contour B'AB is rectilinear
and that its polar equation is written

- ro
sinCpo - qD
OA =1=-—20_ Xg = P tan 9
sin Pq
2 tanQ (tan wg - tan wl) 2 xog(u -
g -1 0 _1

2 (tan P - tan wo)(tan Py - tan wl) ) (XO - p)(xo - )
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2
P(x) = Pro

coseCPO (x - xo)2

and consequently

z Sc052cp0 ) (x-x0)2 Scoscho A (x-xo)2

2 33 2
2 2
26rg” g f G- R P
S coscho ) (z - xo)2 S cos2cpo

Il

with Ry designating the residue at the point z = xj.

However,
Ry =AU .0 aw (k- Nxg

(o) py? - 1 B2 (2mxg) ﬂB (%0 - M) (%0 - Wc® - 1
and
o - 2r02 (u - N)xgwg 212x02 (8 = N)xgwg
. = - =

S 0500 (xg - M) (o - W2 - 1 BB (xg - N)(xp - Mhxo2 - 1

or

Cy = ~ = : (1Iv.39)
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The C, 1is independent of wy and of w;; this generalizes a
result already foundl+6 in section 3.2.2.2.

Let us now suppose that the arc BAB' is an arc of an ellipse with
the polar equation

2 a2p=
bzcos2¢ + a

2sin2q>

and let us, for simplification, assume that wg = -un.

pa2p2

P(x)=22 >0
B<b< + a~x

whence

o - . ea2b2L/’“ Cp(x)dx  opa2p2 R U/‘“ U(z)dz
s R
A

Z
5 8202 | 02,2 8202 1 2272
24,2
= -&@SL B[ziﬂRﬂ

R, Dbeing the residue at the point z =i %?-

In order to calculate this residue, one must know the value of U,

for z =1 @h; this value is very easily obtained from the for-
a

mula (ITII.51). One finds

[I@.Eb> - __EEQ___ Arc sin a sin ©

a) " nB sin @
P Jae + b26200s29

u6In a general manner, one can obtain the C, of a wing, the sur-

face of which is a portion of a cone bisecting the Mach cone, with the
vertex O and a rectilinear trailing edge by measurement of the electric
intensity in the tank. This result may be extended to the case where
the cone is placed in any arbitrary relation to the Mach cone of O
provided the trailing edge is rectilinear.



;:,S@

NACA T™ 135k 211

On the other hand

S = ab Arc tan 8

bB cos O
Thus, if one puts wgy = -i (incidence)
C, = a® —— Arc sin —2 8180 (1v.40)
B sin 6 Arec tan m—e 8.2 + bQBECOSEG

So far we have.visualized only the case where the flow on the plate
was conical due to the shape of the leading edge. To terminate these
few remarks about the flat plate of supersonic contour, we shall now
examine the case where the leading edge is curvilinear.

We shall start with the case of a polygonal leading edge (fig. 75).
The investigation is based on the following remark: if one superposes
at a point A; two elementary lifting flows, which completely bisect

the Mach cone of A; and the first of which has as bounding generatrices
Al A, AjDy, so that w = -wg omn (AAlDl), while the second has as
bounding generatrices A; A, ABy, so that w = wy on QﬁAlBl), one
obtains a resultant flow of such a type that, if A;y, and A7’ are
the sections of the Mach cone of Ay 1in the plane Ox1xp, W =0 out-
side of the angle (BlAlDl), whereas w = -wy on that angle; on the
other hand, u = O outside of the angle (71'A1Dl). Besides, one can

easily verify that the resultant flow thus obtained is independent of
the generatrix A (provided, however, that the latter is outside of
(7'A171)), and that, if one puts as usual

cos 60=——l——- cos 91=——L——
B tan ay B tan ay

the pressure coefficient i1s equal to

ot . _4 on (71A1By)
p \sin 67 sin B¢
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and to

2w cos 647 - X cos 6 - X
£70 ——QL——.Arc cos L - 1 Arc cos 0
P \sin 671 1 -xcos B8; sin 80 1 - x cos 6

/'\
on  (r1'A177)
T ——
X represents as usual a semi-infinite line inside of (71’A171).

We shall note the resultant flow
—
C (Al,eo,eo - 91)

The flow about the plate schematized in figure 75 is then obtained
by superimposing on the conical flow of the vertex O and the bounding
generatrices ODy' and ODy the flows

?(Al,eo,eo - 61) and <C_(Al',eo‘,90' - 01")

with 6g', ©1', 8g, 67 characterizing the directions of the straight
lines OAl ! ’ Al 'Bl ! ) OAl’ AlBl .

If the leading edge is curvilinear (fig. 76), let us assume
A{%l(t),xe(tﬂ the point moving along this leading edge, w(t) the
angle between the tangent at the moving point and Ox;, and let us put

-1
B tan w(t)

cos 6(t) =
Assuming M(xl,xe) to be the point where one desires to calculate the

pressure, one will put

xp(t) - %

x(6) =B ey
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The flow will be obtained by subtracting the flow symbolized by

. \/(;) CE(t),e(t),de(tﬂ

from the flow around a plate of infinite aspect ratio, with the leading

edge Oxo.
If MA, and MA, are, in Ox)Xy, the two semigeneratrices of the

Mach forecone at the point M, one has therefore as value of the pres-

sure coefficient at M by putting

4l 1 _ Ave cos €958 =X | - F(e,x)
do|sin 6 1 - xcos 6
t
2w, 2
c M) = 91 - L F[e(t),x(tzl de (IV.41)
p B ki tl

(compare fig. 76) a slight modification of

At a point such as M'
the formula will be convenient; one must write

t
2
o 2W°f F E(t),x(tﬂ 6
£

CP(M ) = p sin 64 B 1

CP by a simple integral.
of

One thus obtains the
We shall point out a very remarkable result for the total C,
We shall show that

such a plate when the trailing edge is rectilinear.
the C, of such a plate depends only on the trailing edge; this fact
generalizes the result of the formula (IV.39). It suffices, of course,
to demonstrate the result in the case of a polygonal leading edge; thence
the general case is deduced by passing to the limit (fig. 77). According
to the formula (IV.39), the resultant of the normal forces due to the

flow
_)
C(A1,80,80 - 61)
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acting on the region (R) 1is equal to that of the normal forces acting
on the triangle AByD; in the conical flow with the vertex O and

the bounding generatrices 0Dy, ODy'. The result stated above results
from this remark. Thus one verifies that on this plate the total Cg
is the same as if the direction of the flow had been reversedh7.

4.1.2.2 - Infinitely thin rectangular wing

We shall now investigate the case of a rectangular wing, the pro-
file of which is an arc segment (fig. 78). In accordance with what was
said before, this arc segment will be defined by the angle jo(xl)

which is formed by the tangent and the chord at the point with the
abscissa xp; if the wing has a geometric incidence defined by the

angle i, we put
J(x1) = Jo(xy) - 1 (1v.k2)

w must be equal to j(xl) on (R), and u must be zero outside of
(R).

_)
We shall designate by CP<M,a) the lifting elementary conical

flow, with the vertex M, which furnishes the value w = o on the two
faces of the quadrant M, x7, Xp. With the notations of figure 58,

the formula (III.60) is then written

CP = %9 Arc cos (1 - 28 tan @ for O<pBptanp< 1
7
> (IV.43)
= 2%
CP = B for g tan @ > 1

By an argument analogous to the one of section 4.1.1.1.2 we are
induced to define the desired flow by the symbolic notation

47One finds here anew a remark made before by M. Snow (ref. 32) in
a particular case. Besides, this result may be extended without great
difficulties to any arbitrary plate of supersonic contour.
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"(?p(M,aj) + f

an ‘EP(M,dj) - EE‘j(xl)] (IV.Lk)

AAI

The flow thus defined does satisfy the conditions concerning w;
however, one sees immediately that the flow gives a component u, zero
outside of (R) only in the case where the aspect ratio PA is smaller
than or equal to 1. The limiting case BA = 1 corresponds to the dis-

position of the Mach cones given by figure 79. We shall use herel+8 the
hypothesis where PBA > 1, and shall then be able to calculate the flow
by the formula (IV.4k).

—
4.1.2.2.1. Study of the flow f Cp(M,d3) .- We shall use the
]

same notations as in section 4.1.1.1.3. According to equation (IV.h43),
the pressure coefficient CP at a point (xx,yx) is writtenu9
(0 < x* < 1)

Cp(x%,5%) %J; aj(e) = % 3 (=) if 0< x¥< y¥

xX xX-y* x
Cp(x%,¥%) = %nyx aj(e) + Bz_nj; Arc cos (1 - }—c@-‘f——>d3(§)

if xX > y¥

hBIt is not impossible to investigate the case where A < 1. One
must then superimpose on the flow given by (equation (IV.44k)) other
conical flows, the vertices of which describe the two edges of the wing,
in order to establish pressure continuity without changing the w value
on the wing. This investigation is clearly more complicated than the
one we shall make. We shall not enter on 1t in order to limit ourselves
to the simplest results. Further on (section 4.1.2.3.2.) one will find
an application of this method in a special case.

u9Strictl speaking, the slope of the wing should be noted jx(xx)
Y SsP ’ 1Y

when one expresses it as a function of the reduced abscissa. We shall
omit the asterisk in order to simplify the notations.
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These two formulas may be written
Cp = %E(xx) - R(xx,yxil

with

R(y%) = 3 - ¥) - lj;x 7 e cos (1 - B )dj(g)

) xx._g

(IV.145)

stating that the function j(xx) is zero outside of the interval (0.1).

It is then easy to calculate the local ¢, of a section y¥ with
this coefficient defined by

e (5%) - -2 J; " e () ax

Remarking that

and putting

xX
£ (xX) = J; Jo(e)at @) = o]

one has

Now
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f; R (3%, y¥) ax* = f; 3 - y¥)ax® -

,l, x_yx_
%fyx dxxj;x Arc cosé_ - xle_,x )dj(

=1 -y -1@Q - ¥) -

217

£)

1-y* 1
1 o .2y
':?j; aj(e) fyx+§ Ar cos(l —a yx>dxx

However,

yx

1-¢
f Arc cos (l - g%x->du =2 El - £)Arc sin y* +

1 -t

< yXe)]yx

Thus we put

k(. ,)__[ )Arcsm\!— \fyx ) |

k(y%,8) =2(1 - ¢)

if y¥<1-¢

if yX>1 -¢

\ (IV.16)

J
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1
fyx R(xX,y¥)axX = £(1 - y%) - i(1 - y%¥) + yx[-i + 3ot - y"xﬂ -

1-3%
-%—j; k(y%,8)di(e)

= -1+ % k(y%,0) + £(1 - ¥%) + y¥io(L - ¥¥) -

1-yX
%J; k(y%,8) iy (8)

with
1%
po(v) = £(1 - ¥) + ¥¥3,(L - ¥¥) - -fgj; k(y*,8) diy(8)
(Iv.h7)
Consequently
Cz(yx) = %{'(L;ﬁ)‘ i+ % Po(yx) (IV.48)

One will find in figure 80 the curve giving the variation of k(yx ,O)
and of k(y¥,1/2).

We remark that

1 1-yX 1 1-¢
f dyxf k(y¥,8)diq(e) = f djo(g)f k(yX,&)ay*
0 0 0 0]

1
= gf (1 - &)2aj5(k)
0
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because
1-¢
J; k(y,8) ay* = 2(1 - 8)7
However
1 1 1
f (1 - &)Bajy(e) = 2f (1 - £)ipe) = af £(x)ax = 2u
¢} 0 0
putting
1
kj“ f(x)dx = p
0
On the other hand
1 1
qu f(l - yx)dyx = L/‘ f(x)dx = u
0 0
and
1 1 1
f ¥ - yX)ayx = f (1 - t)Jp(t)at = —f tig(tlat = n
0 0 0
Consequently
1 3 2
f ep (Y)ay* = =+ = (IV.49)
0 B B

4.1.2.2.2 - Study of the thin rectangular wing in the case where
BA > 1.- As we have said in section 4.,1.2.2, one can apply to this case

a method analogous to the one employed in section 4h.1.1.1.4. The pressure
coefficient at a point of the wing situated on the surface Xz = +0 of
reduced coordinates t,

N, can immediately be written

Cplt,n) = %Eo(t) -1i- [R(t,no + 1) + R(t,ng - nﬂ
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Consequently, the local ¢, of the section 17 1is obtained by the

formula
1
cy(n) = -2J; Cp(t,n)at
=.1;_3_ %E21+121.E<(q +1,0) + k(ng - 1, ﬂ +
Po (g + 1) + Py (g - nﬂ
or

e (n) =26—ik(no+n,0) + k(ng - 1,0) -2:|+4[ o+ M) +Po(”o'”ﬂ

with the functions k and py being defined by the equalities (Iv.46)
and (IV.47). Finally, let us calculate the total C,

1 . . 2n 2n
c, =L [ ° S Ei—f © x(t,0)at + lt_f O o(t)at
21g B Bngdo Bnigdo

and since

0
N
~~
=
g
oY
=3
Il

2ng =1+ BA -1

one has, applying the results established at the end of the preceding
paragraph,

Cz=-4—i+L<§—+——>+(B7\ ].)L*l
B n p Png

because

k(t,0) =2 if t>1
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whence

(1v.50)

=
e
1
H
e
+
F

C,
Figure 81 gives the variation of <% T ), as a function of M,
i

et bt
i

for various values of 0.
One may also plan the calculation of the drag of this wing. PFirst

of all the local drag

1
ex(R) = tey(n) + 2 J; ¢ (6,m) Jo(t)at

or
cx(n) = tez(n) + % Jo° - %E(ﬂo +m) + T(ng - nﬂ (1v.51)
putting
1
T(y¥) = f R(t,5%)ip(t)dt
yX

1
9+ [ ol - oe)as -

1 -
ifyx Jo(t)dtft v Arc cosé. - 2yx >dJ(§)

n 0

504 Bonney has already obtained this formula in the case where
jo =0, p=20 (rectangular flat plate); compare reference 33.
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whence

1 - 1
7(y*) = if(y¥) + Qﬁ_lf Are sin\!? Jolt)at + f Jolt - ¥¥)iplt)at -
y

yx X

1-yx 1 %
gf djo(g)f Arc sin [—L— jy(t)at
TJo vX+E t -k

The total drag C, will be obtained by taking the mean value

M - 2n

0 . " 0

CX = 2L. cx(n)dn = 1CZ + & J02 - _Lf T(t)dt
no ~1g B BnoUJo

v=2 4 [*
C, = iC. + = j - — T(t)dt

It is easy to calculate the mean value of T(t) in the inter-
val (0.1), since

1 1
J; ay® | dolt - ¥)do(t)at = o

yX

and

1 1-yx 1 X
f ay* djg(e) Arc sin Jo(t)at =
0 0 t -t

yE+E -

fl ()ft ()ft"é Y g%
j~(t)dt dajlg Arc si d =0
oJO 0 ’ 0 e -E

The calculations are analogous to those carried out at the end of sec-
tion 4.1.1.1.3.
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However,

1 1 -
dyx Arc sin ll'-— Jo(t)at
0 yX t

1 t " .
L]; Jo(t)dt‘j; Arc sin ‘?T dyX = -u r
consequently
bT2 bpi _ 4i° 1) Y T2
Cx = = 4+ iC, - ZBL 17 L\ X IV.5%
x =g Jdo iCy a2 B( 28" p 90 (Iv.53)

We shall make an application to the case where the profile is

defined by
. . X 1
= £f 0 X =
Jolx) = g i < X< 3
Jo(x) = -Jg if %< *<l
. . 1
X if O« x< =
Jo 5
f(x) =
: 1
1l -x if = <x< 1
Jo( ) >
L 1
2 J
0
H o= Jox dx + jo(l - x)ax = I
1
0 2

In order to determine the local forces, one must calculate the functions

po(yx) and T(yx); now

. J .
Jok(yx:@ - ?O k(yx:o) if 0¥y g %

pg(¥¥) = ; (Iv.54%)
jo-zo-k(yx,o) if %gyxgl
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The variation of po(yx) for a wing of reduced aspect ratio equal
to 2 is given by the figure 82.

On the other hand, T(yx) can be expressed simply as a function of
k(y%,£). In fact

- 37%)dg" if 0gy*

/A
o) I o

1
fyx Jolt - ¥)it)at =<

(yx - 1)302 if %g g1

N+

tJo 1 ;
) Ps(g) - xr0) - e st o<t
. Arc sin J?’tz Jo(t)dt =
' 72l - x(,0) AT

These formulas one can establish immediately, remarking that

fl_gArcsin\J‘du-—[:yxg —Eyﬂ

yx

Finally

oo Epr(ea) - o -
k(yx,Oﬂ if 0< y¥¥K 1

1-y% 1 .
f djo(g)f Arc sin ’ 3_’ jolt)at =<
0 y+E t -t j02 ﬁny ) k(yx,oﬂ

if

M-
N
<
N

'_l
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whence
ﬁ r% Jo Ek(yx,]é'-) - k(yx,O)] + 1 302[:2 + k(y%,0) - uk(yx,%z__l
T(yx)=4 if o<yx<-21-
Eiof - xond] Bafltm0 -] deves
(1Iv.55)

In figure 83, one will find the distribution of the drags over the
span for a wing of this type of reduced aspect ratio equal to 2.

One will remark that

" pp)ays - & - d0
5 FO T2 8

and
1 i i
f T(y)ar* = B = 2 do
o 2 8
This results from the equality previously demonstrated

1-¢
f k(y*,8) ay* = 21 - £)7
0

4.1.2.2.3 - Effect of flaps and ailerons.- We shall begin with the
case of a flat plate; the formulas can easily be generalized in the case
where the wing profile is curved. The ailerons are, for instance, dis-
posed on the plate in the arrangement indicated by figure 84; 7y desig-

nates the deflection of the first aileron A'CDD', 7y, that of the
second B'EFF'.

—>
For study of the flow one must utilize conical flows T(M,a) which
one can define in the following manner. In the region X3 > 0 the
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— —>
flow T(M,a) is identical wiﬂ}_) the flow Cg(M,-a); in the region Xz < 0
it is identical with the flow CS(M,a). One can immediately make an
interpretation of the flows T which gives account of the possible

—>
utilization in the effects of flaps and ailerons;2l the flow T(M,x)
is established when, after the plane Ox;x%> has been materialized, one

makes the quadrant Mx;x, pivot around Mx, Dby an angle -a (fig. 58).

Hence the investigated flow may be obtained immediately by superposition
of conical flows schematized in the following manner

R
—> «
Cp(A,-1) cp(B,-i) E(AB,+i)

_C;,(Cnl) ?D,71) E(CD,-71) ¢ (Iv.56)

< —>
CP(E:72) T(F)72) E(E-E‘J'72)j

If such a scheme is to be valid without further complications, the
pressure coefficient outside of (R) must, of course, be zero. This
will be the case if the reduced aspect ratio of the plate and the flaps
is greater than, or equal to 1.

Let us apply these principles to the calculation of the local Cy
of a plate for which the Mach cones of the points 4, B, C, D, E, F

are disposed as shown in figure 84. One may then place the origin at the
point A and immediately write the local C, as a function of

yx(yx = Bxg)i one will put AA' =1, CA' =¢, BCD = 1, according to

51We have indicated this method in a note to the reports on the
proceedings of the Academy of Sciences in December 1947 (ref. 37). The
advantage of the flows T we indicate here has also been pointed out in
the article of M. Snow, published at the same time as our note (ref. 32).
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the results obtained in sections %4.1.1.1.5 and 4.1.2.2.1:

i %ElEm oin [+ 6 -] +
iErc

!
™I|F

71¢

(i +

sin\ly_x+\j;x_(l_:—yxj:ﬂ if ¥ <ec

+-2ﬂ_il}rc sinJy_X+,’yx(l—yx)] c<y*<l1

71‘3) l<y¥<i1-c

l-c<yX<e

7.¢  7,c -
L lare sinlx—-_—l+(yx-z)Argch——°—-—]
2 b1 c y.x_

l<y¥X< 1+ ¢

227

In figure 85, one will find the distribution of c¢, over the span.

Besides, it will be possible to write in a general manner the local

of any slender rectangular wing provided with flaps or ailerons.

Cz
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In fact, if one puts

f(u,c):cE+2(Arc sin-“3-+uArgch—°—] if -e<u<e

7 c jul

f(u,e) =0 if u+e<O r (1v.58)
f(u,c) = 2¢ if u-¢>0

one has with the customary notations

c, (n) = %E(ﬂo + n50) + k(ny - 1,0) - ] + %l@o + 1)+ P - nﬂ +

2y —
—B—];k(no+q,l-c)—f(qo—l+n,c_)—+

27 —

_Bg k(ng = m1 - ¢) - £(ng - L - W,¢) (1v.59)

The total C, may be easily calculated. We remark for this purpose

that
2n0 c 2no
k(u,l - c)du k(u,1 - c)du + k(u,1l - c)du
0 0 c

% c® + 2c(2no - c)

The mean value of f 1is very easily obtained whence

. +
cz=ﬂ1_..l— +—4E+2£7—1-—7—2-)-2c1-lc2 (1Iv.60)
B 2BA B2\ B2 2

One also sees that the calculation of the moments does not present
any difficulties.

i
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4.,1.2.3 - A few remarks regarding the study

of the effect of sweepback

We cannot here develop a theory of the sweptback wing. We there-
fore shall content ourselves with a few remarks.

4,1.2.3.1 - Study of the sweptback wing with "supersonic leading
edge" (B cot y > 1), compare figure 66.- This investigation does not
present any difficulty in the case where the reduced aspect ratio ule}

is greater than i___;L__T;' We reassume the notations of sec-
- cos
tion 4.1.1.2.1; let j(&) ©be the angle defining the infinitely slender
rofile of the wing supposed to be constant over the span

J(g) = jo(&) - i]; the flow will be obtained by superimposing as before:

(1) Conical flows bisecting the Mach cone, centered on 00'.
(2) Lifting flows centered on AA' and BB'.

(¢) Finally flows about the wing of infinite span with a fin with
the same profiles as the wing profile and leading edges which
coincide with OA and OB.

In order to simplify the investigation, we shall assume that the
Mach cones of the points O, A, B do not interfere with the wing;
this will permit one to study separately the "head effect" (conical flows
centered on 00') and the "end effect" (conical flows centered on AA'
or BB'). The "head effect" can be investigated immediately, according
to the formulas of section 4.1.1.2.1.

The pressure coefficient on the surface Xz = +0 is written

CP - f sin el:‘j(x) B 2Q ,yx,e:]

Q being defined by the formula (IV.21) in which «(f) has been replaced
by J(&).




The local-lift coefficient is written

1 x-y¥(1-cosb) .
cz(y-x) = 4% + 8. Arc cos —o— e(x - & + yreos e) dj(e)
B sin & PBx sin ©
yX(1-cos8) U0 \/(X - §)(X - & + 2y%ces 6)

The mean value of cz(yx) in the region 0 < y¥ < 1———1—-—-6- is equal to
- cos

l X ﬁ—
l-cosb
Li N 8(1 - cos 8) dx aj(e) Are cos . Sin e(x - ¢ + yXcos 9) ayX =
Uo 0 0

g sin 8 fr sin 6 \E{_g)(x_§+2yxcos 6)

Li 8I(6)(1 - cos 8) [ i
B sin © ¥ B sin © ( 5" “) (Iv.61)
with
1
1(0) = Arc cos sin © dt

2
o \’l - t200529 (1 - t cos 8)

=2t 1y ——31 /T _ 6\cos 20 + X cos2e
2 sin © cos 6 sin 06]\2 2

0%2

HGET WL VOVN
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Likewise, the local drag is written

xy _ W 4
ex(y") = Bsin6 P sin @ o(y*,9)

=
S
2
-
N
U
g

under the condition that in the formula defining G, (formula (IV.25)), a(t) is replaced by

-1 is written
1l -cos &

X lxc;se
4+ 36) _ 8(1 - eoe ﬂf j(x)dxf dd(g’f are sin 2 00e = & + y%e00 )  gox
0 0 {

B sin © B sin © X - g)(x - ¢t + 2y¥cos 6)

(). The mean value of this drag in the region 0 < y* <

42 + 5c°) _ 8Q1 - cos 0) I(e)fl j(x)dxfx (x - £)aj(e) =
0 0

B sin © Br sin 6

412 + T2 -
(1 f Jo ) _ Q2 cos 9) I(6)12 (Iv.63)
B sin 6 Br sin 6

One may study in the same manner the "end effect" by compounding the flows investigated in
section 3.2.3.2. Taking the reduced coordinates, referred to the point A, one has immediately

Cp = ﬁ—ﬁ-ﬁE(x) - REc,yx(l + cos 6:)]

1¢e
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R Dbeing the function defined by equation (IV.54). Consequently

cz(yx) _ 2k(yx(l + cos 9),0) i+ B_g%ﬁ_a PO[ix(l + cos Gi]

B sin ©

1

—  is written
1 + cos ©

the mean value of ¢, in the interval O0< v <

Cy = 3? + 2&
$ sin 6 g sin ©

In the same manner, one obtains without any difficulty the value
of the local drag

cx(yx) = icz(yx) _ 362 b T[&x(l + cos Qﬂ

+
g sin 6 B sin ©

1

and its mean value in the interval O < yx < ——
1l + cos 6

512 4 3.2
B sin © B sin 0 °

One may summarize these results in the following manner: we con-
sider a wing of an aspect ratio equal to Eno (fig. 86); the total C,

of this wing is written

CZ=—L—1—I—('9—)(1."COS e) 1 + 51. 1 +
B sin eno b1 1l -cos @8 noB sin 8 1 + cos 0O

.2
bi no sin“e - 2 2 [j 1 . hI(O{]

+
nOB sin 6 sin26 B sin Gno 1+ cos 8 s

or

PR SR N U | . “I(G)> . 2u 1 L b1(e)
Z B sin © kng\L + cos © 7 Bng sin 6|1 + cos 8 T
(Iv.6k4)
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Likewise, for the total drag

2 T2
. - l+(1 + Jg ) 1 __h1(e) 2 4
¥ o8 sin @ 1 -cos 8 Br sin 6ng
[: 342 . " 72 1 N 1+(i2 + 362) M sin®8 - 2
Bsin® pB sin © o (1 + cos e)ﬂo B sin Ong sin2e
or
452 11 x1(0) K"
Cy = L 1 - ( + ) + 2 (Iv.65)
B sin O hno 1+ cos 6 T B sin 0
l -
- cos ©

These formulas remain applicable as long as 15 > T

4.,1.2.3.2 - The study of the sweptback wing with a supersonic leading
, or with a subsonic leading edge, presents more

1

edge when < —
& "o 1l - cos ©
serious difficulties.- A complete investigation of this kind would lead

us too far. We shall content ourselves with treating a simple example
which will show how to proceed in order to surmount the difficulties.

We attain this aim by introducing conical flows which we shall

denote
S(M,to,uo)

defined in the plane 2Z by the following toundary conditions (fig. 87):

(1) On (co), u=v=w=0.

(2) on 0A, w = 0.
(3) On the upper edge of OC, u = ug-
On the lower edge of OC, u = -uy-
ug 1s a given constant, the point C 1is the image of the number Z = —ae;
one puts as usual
2g?

tn = =2

0 1+ abt
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The methods of chapter IIT permit one to write very easily the
function U(Z) the real part of which gives the component u of such
a flowy; 1if one puts

Z = s2
one has
iuo ia 1 .
u(z) = - log[s - 18 L + %asi, (1Iv.66)
14 s + 1a 1 - ias

One verifies readily that this flow satisfies all boundary conditions.
Besides, if one puts

one has on OA

W C 2ta(1
u == =0 Are cos {1 - ——Qﬁ——————
T t + 'to

]
L 1<
|
N
alc
@]
[e)
(6]
H-
o]
ct
ct O
+|
ct]
O
ct
| —

(1Iv.67)

These flows will enable us to make the pressure discontinuities
appearing outside of the wing disappear, without modification of the
boundary conditions on the wing itself.

Let us take for instance the case of a plate of the plan form indi-
cated in figure 88. With 7y Dbeing the sweepback angle, one will put as
usual

1
cos 6

B cotan y =

One assumes that the Mach cone A does not intersect the seg-
ment OO0', but that the Mach cone of O does intersect the segment AA'
at the point Mgy. According to what was said above, one will obtain a

flow which satisfies the boundary conditions on the wing portion yX < 0
by superimposing a conical flow of the vertex O and bounding genera-
trices OA, OB, a flow of the vertex A and bounding genera-

trices AA', AO, and by subtracting the flow about a plate of infinite
span with AO as leading edge; however, the region MOPOA' then is a
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zone of discontinuity for the pressure. If MgP; represents the other
generatrix of the Mach cone of Mgy in x;0x,, the pressures obtained
in the region MpA'P; will thus be erroneous.

One will obtain the desired result by superimposing on the preceding
flow a flow schematized by

S{(M,tn,u
LOA, (M5%0,10)

In this formula

sin e(g + ng cos éj
Jg(g + 21, cos 6)

24 d .
u, = = — &= = |Arc sin
0 B sin 6 Of

i

- o
- £ + ng cos 8

to

if M is at Mgy, tg =1, & = n9{l - cos 8).

The pressure coefficient?? in the region MpA'P; is given by the
following formula (y¥* is negative):

52One will find in appendix No. 6 the explicit calculation of this
pressure coefficient and a few important brief remarks regarding certain
pecularities occurring in analogous problems.




(T]O+ yx) (1+ cos 0)

sin S(X_ yXcos G) + Are sinJ

Cp= - ——21——8— 2 |Arc sin g
P sin &) \Ix(x-2yxcos 6) X
X~ (no+yx) (1+cosB)
n §- n + 1+ 0 i
L2 Arc sin Ol: ° yx) cos ):I Arc sin oo 9(§+-qo cos 9) ag
2 NoX+ =& 5& \Ig (g + 27 cos 9)
ng(1-cos8)
(Iv.68)

One verifies in particular that Cp becomes zero for y¥ = -ng, that is, on the edge AA .

One can see that this formula is rather complicated. We shall content ourselves with exemining
the case where 6 = 0. The formula then presents an indeterminate form which may, however, easily be
eliminated by developing the terms in brackets up to the first order inclusively (in 6). It is con-
venient to perform an integration by parts before making this development.

The result then is considerably simpler; one finds

x-2 (ng+3%)
Cp = i Ax-y) L2 RS aiArc sin ol - & - 20 + )] a
P\ el - o) (& + 2n9) nox + ¥

(1v.69)

o¢e

HGCT WL VOVN
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The integral of the second term represents the "end effect" of the
wing AA' while the first term represents simply the pressure coeffi-

cient in the conical flow with the vertex 093,

As an application, we éhall éalculate the total C, of this wing

1 1 X-z
c, = 81 | O ay* x + yx dx . L dz dx F(z,x,t)dt
Brig 0 0 \I x + 2y¥) "Jo z 0

55Had one wanted to study directly the case where 6 = 0O by appli-
cation of the preceding method, one would have been led to write

C.o- Ml x -yt
b B
x(x - 2yx)
x-2(n0+yx) [
nofx - & - 2(1p + ¥°)] g+
2 Arc sin S 9 dg
“Jo no¥ + y¥E ot (€ + 2n0)

However, the integral of the second term has no meaning since the dif-
ferential element is in £~2/2. TIn order to eliminate this difficulty,

one must utilize the conception: "finite part" of an integral intro-
duced into the analysis by M. Hadamard (compare ref. 7). One has in fact

-2 (ng+y¥) o TIOE‘ -t -2(g + yx):] 5 £+ g 2 -
< =
5 Nox + ¥¥E & ,’g (& + 2np)
) 2 (ngy¥) e 3l ﬂoE‘ -t -2(n + yx)]
. k(£ + 210) % nox + ¥

This justifies once more the interest in the motion of the "finite" part
of an integral which permits a very easy performance of limiting. process

which may be delicate.
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if one puts

2(ng + ¥*) =

with F(z,x,t) designating the quantity under the sign (jn in the

formula (IV.69). The double integral may be calculated immediately
(compare the end of section 4.1.1.2.1)

Mo 1 o
X X
f dyX XY ax = dxf XX Y ayX =
0 0 Jx(x + 2yX 0 0 x(x + 2yx)

fr—u{ ]

As to the triple integral, one may write it changing the order of
integrations

1 X-§
§+1]0L|/-6d§ i 2-Xx-219 g .
,’g(g + 275 X o 26 + 2np(x - &) yx - & - 2

In order to calculate the last integral, one puts

f\)l\N

It is then written

, B20x - &) - (x + 2ng) (1 +t2) 24
2y (1 + t2) + t2¢ (+ +2)2
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and may be calculated rapidly by residues. It has the value

2% Tlo(ﬁ + 27]0) - %(ﬁ + l”lo) - g

2

Therefore, it suffices for calculating the triple integral to
utilize the following results

1

(8 + o) - &) ag = 2(2 + TlO) - 2ng(% + 21g) Arc tan —%

o "E (§ + 2710) 5 219 \[2"]_0

(8 + no) (2 + 4ng) (2 - ¢8) | Mo L 3
E = - + + 61,8 +
62728 + 2ny) 52 °

1 - kn.2
g5/2 + -~ o Arc tan |-

(£ + no) (1 - €%)ae ’g ¥ 2ng 28 + 1o
= - ,F £ + En +
\/s(g + 2n)E2 ( ° 5 ok

The triple integral thus has the value

W

O\

z g <1 + lon(’) G S T L )

3 8 \Ign_o 3

which leads to the following value for the desired Cg

. 10
c, = Bﬂl'qo (3 +5 T]O) ﬁ + (1 + Eno)eArc tan —L— - % (Iv.70)

One will find in figure 89 the variation of C, as a function
of LR
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As an application, we have traced in figure 90 the variation of

% %S& as a function of the Mach number for plates of the plan form
i

defined by figure 86. The angle of sweepback is 45°; the geometric
aspect ratios are, respectively, equal to 1, 2, and 8. The points sit-

uated on the abscissa M = JE_ are obtained exactly [Eormula (IV.70§].

The parts traced in solid lines are given by the formula (IV.64). The
dotted parts are obtained by interpolation. In order to obtain them in
full rigor, one would have to calculate the C, from the formula (IV.68).

4.1.2.4 - The Uniformly Lifting Segments

The role played by the "horseshoe vortex" or "uniformly lifting
segment" in the subsonie wing theory i1s well-known; the linear theory
of Prandtl is based on this conception. We shall show how easy it is
to obtain the corresponding supersonic flow, and shall indicate a few
possible applications.

According to section 3.2.3.1, the conical flow for which

U(z) = ug + 1 =2 log —Z (1v.71)
n 1+ 272

represents a flow for which u has the value zero in the plane Xz = 0
except on the quadrant Ox;, Oxp where u assumes the values ztug.

Let us then apply the results of section 1.3. The homogeneous flow of
zero order, defined by the complex potential

0(z) = -1 20 10g —Z (1IV.72)
en 1+ 7°

may be considered as a derivative of the flow in the direction Ox; of

the conical flow defined by equation (IV.7l), and consequently defines
the flow corresponding to the uniformly lifting semi-infinite line Oxp,

with the uniform 1lift being equal to Py- The velocity field inside of
the Mach cone I' of O is obtained by application of the formulas (I.29)
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uo Po PP 41| 22 -
21'le p2 -1 - Z2 + 1
P 2 2
v=—-0 P +1 ol BZ” -1
2]‘[}(1 pe -1 - 2 Z
Py P (22 - 1)°
we -0 P-+1p) BAZ” -1
2nx) o2 _ 1 7| 2 z(z2 + 1)

Outside of (I') the velocities are zero.

If one calculates the velocity field in a plane x; = xlo (xlo
being very large), one has therefore

P~ gf—
X1
Consequently
4 ~ 0 v = - EQ sin 0 w Po cos ©
2x r 2n r

that is, the classical vortex field.

In order to obtain the flow corresponding to the uniformly lifting
segment, one visualizes the superposition of two homogeneous flows of
this type. Let, for instance, A, and A, be two points of Ox,, and

Z7 and Zo the values of the variable Z if one takes, respectively,
A, and A, as origin. The desired flow is determined by the complex

potential5LL

ip Z Z
0(z) = —2|1og —2— - log —+—
2x 1+ Z22 1+ Zl2

51I’The formulas here obtained have been obtained by another method
by Schlichting (ref. 34).
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This could form the basis of a theory of straight wings (without sweep-
back) analogous to the Prandtl theory for subsonic flows. However, one
has not succeeded in linking the local 1ift with the general inclination
of the profile.

On the other hand, one can apply these formulas for the study, at
least in an approximate manner, of the velocity field behind a straight
wing when the distribution of the circulations is known. This seems to
us to be a method which should permit a first investigation of the inter-

action of a wing and the controls??.

Likewise, it is very easy to define, following the same principle,
the flows corresponding to two uniformly lifting semi-infinite

lines 04y, O0A, (compare fig. 91). If P cot 7y =

, we are
cos 6

dealing with a homogeneous flow of zero order, defined by the complex
potential

ip °
n 1+ 7% + 27 cos ©

This results immediately from the formula (III.47). Likewise does the
semi-infinite line O Ay when uniformly loaded, give rise to the flow

defined by

i
q>(z)=-§13910g 2 Z
n 1+ 2% - 22 cos ©

In each of these cases, one can immediately write the wvelocity field,
applying the formulas (I.29).

This permits one to define the flow about a 1lifting line such as
A,0A, which is uniformly loaded. As in the case of a straight wing, one

may utilize these flows for the study of the velocity field behind a
sweptback wing.

SThe investigation made in section 4.1.2.2 for the rectangular wing
permits in fact calculation of the forces acting on the wing but does not
in any case permit the study of the field behind the wing.
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: 4.2 - Study of Fuselages

h.2.1 - Generalities Concerning the Flows Past Bodies
of Revolution of Fuselage Shape

By composition of conical flows, we shall obtain a new method for
the investigation of flows past bodies of revolution. The results.
relating to these flows have formed the subject of numerous reports
(refs. 35, 36, 5); however, the methods we shall describe seem to us to
permit certain generalizations. The given parameter in this problem is
the value of the radial velocity v, along a meridian line. This veloc-

ity is equal to gﬁ%-@q); r(xl) is the function defining the meridian
1
line in a plane r, Xx;. However, we shall see that vr(xl,r) is a

function which is, when x7 1is fixed, of the order %, for a small r.

The boundary condition may also be written

_ dr _ 1 d8

rv,, = r =— = — =2

r dxl 25 dxl

with S(xl) = nr® designating the area of the fuselage section of the
abscissa x3;. If one makes r tend toward zero, rv, will maintain a

finite value. In a precise manner, we shall state that the investigated
flow will have to verify the following boundary condition

o

S (IV.T4)
1

1lim rv, = L
25
r —>0

i

4.,2.2 - Investigation of a Particular Case

Let us consider the flow around a cone of revolution; the formu-
las Vv(z), W(z), U(zZ) are functions of Z which admit inside of
|Z| =1 only the point Z = O as a singularity. Thus they may be con-
tinued analytically to the interior of the circle (C), image of the
conical obstacle in the plane Z, under the condition of excluding the
origin O from this circle.

After this statement we shall determine the flow around a body of
revolution the meridian line of which has the simple form given by fig-
ure 92. 0 naturally is an infinitely small angle. A first idea for
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obtaining such a flow consists in subtracting from a flow around a cone
of revolution of the vertex O and the angle 653 a similar flow of

vertex A. Let us put

2
fl _ 1+ E2 X, - a _ 1+ P
Br  2p pr 201

The radial velocity of the resultant flow is

2
BO
Vr=—OL.—p_.:_L__pl
2 P Py

Let us assume that p and pq are infinitely small which is the
case for points M which are sufficiently distant from A

2 2

e S ad

er?L;_L~_<>_xl_(xl_a)]= 0
2 o} P r r

2

In order to obtain the desired flow, it will therefore be necessary
(which is, besides, in accordance with the theorem of section 1.1.3) to
add a homogeneous flow of zero order with the vertex A defined by the
complex potential

2 (21) = -a8¢p°1log 7y

with Zy designating the complex variable Z for a flow with the ver-
tex A (in particular |Z1| = pl).

The resultant flow has for x; > a the radial velocity (compare
formula (I.29))

BOo° [/1 1 800° 1+ py” 1
Ve = =I5 - P) - (- P - Py + =
2 [o] pl Xl - a 1 - 012 pl

or

2
r~ EEQE 207 - 20 - 2 <l il ple) Br
2 1 - 012 (Xl - a.)2
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The obtained radial velocity is therefore not identically zero along
the conical obstacle, but it is very small when x; is not too close to

a since p, Py and r are infinitely small quantities. For the rest,

the equality (IV.T4) is satisfied for any value X7 > a. In first

approximation, we regard the flow obtained as satisfying the conditions
posed, although of course the value of v, is not negligible if x; is

close to =a.

Let us now suppose that we would want to study the flow around a
body of revolution which has a meridian line schematized by figure 93.
One is led to visualize the flow as a resultant of the previously defined
flow and a conical flow of revolution of vertex A relative to the
angle ©y7. At a point M situated on the meridian line (when the

abscissa of M is distinctly larger than a), one has as the radial
velocity

2 2 )
e~ 602<Xl _ Xl - 8.) _ 90 a + Gl (Xl - a
r r r T r

where
r = (xl - a)el + afg = r(a) + (xl - a)el
If one puts
r(a) = adg
r(a) designates the radius of the abscissa section Xy = a.

Hence

@9 (r - ab r(a)o
N LG VO ]

r r r

Since one must have v, = 6, one sees that one must, moreover, add

the homogeneous flow of vertex A of complex potential

¢(z) = r(a)e, log Z
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Finally, the case investigated is obtained:

(1) By adding a conical flow of the vertex O relative to the
angle 08p-

(2) By adding a conical flow of the vertex A relative to the
angle 8.

(3) By subtracting a conical flow of the vertex A relative to
the angle 8p.

(%) By adding a homogeneous flow of zero order of complex potential
r(a)ne(a)log 2

where r(a) is the value of the radius for X =a and
Aﬁ(a) is the discontinuity of the angle © for xj = a.

4.,2.3 - Approximate Study of a Body of Revolution
of Fuselage Shape

The application of the above said permits to obtain, in an approxi-
mate manner, the flow about a fuselage-shaped body the meridian line of
which is polygonal and, by limiting process, the flow about a body of
revolution the meridian line of which possesses a continuous tangent.

If one assumes first a,, ao, . . . a, . . ., as the abscissas of

the vertices of the polygonal line which constitutes the meridian, the
desired flow will arise from the superposition:

(1) Of a succession of conical flows which cause an axial velocity
of the form (formula (II.23))

o}
6, 2log —LB
- p.2 +1
n
where
1+ pn2 X] - ap
20, Br

with 0, being the value of 6 for a, < x) <ap;;;
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(2) Of a succession of homogeneous flows which cause an axial
velocity of the form (formula (I.29))

AR 2
Ty Aen 1l + Pn

X} - 8,1 - p?

where
T, = r(an) N8, = A(en) =6, - 0,1

However, p, will be very small except in the immediate neighborhood of

, consequently one may expect the reduced axial velocity to be written

X7 - a r, A8
u(xl,r) _ Z enelog 1 nt+l _ Z n ©%n
X1 - 8n X1 - 8

an

with the sums E extending to all points A, the abscissa a, of

which is smaller than x; - fr. The case of a meridian with a continuous

tangent is obtained by performing the limiting process in the preceding
expression which leads to

"= -Lj"xl’ar 02(8)ag _ k/“xl'ﬁr r(8)0'(8) 4
0 X - ¢ 0 x) - &

However,

o(g) = r' (&) r'2(g) + rr' ' (g) = g; 535 s(t)

if S(g) = nre(g).

One obtains

1PT 425
B 1 dg?
u= - A ST ag (Iv.75)
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This expression is exactly the one given by Laitone (ref. 5); it
is, besildes, equivalent to those suggested by the other authors named
before.

However, the argument just produced is somewhat summary due to the
difficulties arising in the neighborhood of the points aj, an, . . .
a . . . In the following paragraph, we shall justify the aforesaid, in
particular the important formula (IV.75).

L.2.4 - Justification of the Method
The question is to calculate the radial and axial velocities
according to the rigorous formulas, and to take the possible simplifi-
cations into account only in the final result. The radial velocity com-
prises two terms, the first of which results from the composition of the

homogeneous flows of zero order; the differential element of the corre-
sponding integral is

B_ 1 f, L\L+of _L11l+0P(),
2 (p+ F’>1 — ()20 (&) T (£)ao(t)

or

Lr(z)o' (8)at + pr2(z)e’ (&)ag)
r

if one assumes 6(t) differentiable since

hence the contribution due to these flows to the radial velocity

X, -B 1
-;—f r(g)e'(g)ae + f r(g)e' (£)dp
0 P
0
Py Dbeing the value of p(g) for & =0.

Likewise, the composition of the conical flow causes an integral
the differential element of which is written
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p(e)|ae = S B of(e) 2l -8), S~ po°(e)ap
2 dg Br

B o2(g) (L _ .
2 3¢ (g)dgl;(g)

2
Hence the desired integral
X7 -Br 1
1
%f 02(g)ag + Bf 02(&)dp
0 P
0
Thus the velocity is written
Xl—Br 2 1 )
o[ B g [
nr 1
13 o

2
d__s_(g_) and con-

The last integral is bounded by the upper boundary of >
dg
The calculation of u

sequently the condition (IV.74) is thus verified.
is made by a gquite analogous method and leads to the formula

f"l‘ﬁr r(8)e2(e) 262(8)
0 1- 92(5)

X3 -Br o
w=l 1 d%8 g
2n 0 X.l - g d§2 Xl - §
X -Br 1
1 d°s
.1 A% .1 20(¢) (4%s)4
2n -t %5 2 5 [P
1 1+ p2(8)\ag
0 Po
Now it is quite obvious that this last integral is negligible com-
pared to the first. Thus the formula (IV.75) is established. It furnishes
the following approximation for the pressure coefficient
Xl-BI' 5
¢, = 1 —1 475 g¢ (IV.76)
7C o Xl - g dge

I
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Remark.

In chapter II, we had utilized the formula (I.10) for writing the
pressure coefficient. This formula would lead to write here

X1 -Br
2
C. = :_L_ d=s dg _ I"2(X)
b1 0 d§2 Xl - g

One will compare this formula with the one given in reference 26.

Nevertheless, the analysis Jjust made does not guarantee that the term r'2

represents all terms of the second order; therefore, besides, in accord-
ance with Laitone, we shall content ourselves with the formula (IV.76).

4.2.5 - Generalizations

The method indicated above has the advantage not only of giving a
new demonstration of the formulas relative to flows of revolution, but
also of furnishing a more general method which lends itself to applica-
tion to numerous fuselage problems.

Iet us take, for instance, the case of fuselages of revolution the
axis of which is slightly inclined toward the wind direction. One may
reassume the preceding method, starting out from the flow about a cone
of revolution inclined toward the wind (formulas (II.24) and (II.25)).
The desired flow is obtained by suitable superposition of those conical
flows and of homogeneous flows of zero order which one deduces from them
by differentiating these flows in the direction of the axis of the fuse-
lage (compare section 1.3).

It is permissible to assume that this method will also permit the
study of fuselages which are not bodies of revolution but the cross sec-
tion of which remains, for instance, homothetic. Certain difficulties
make their appearance, but do not seem insurmountable. In entering on
the investigation of fuselages by the method of conical flows, we aimed
only at indicating the principle of a new method. We reserve the devel-
opment for a later report>°.

56Compare in appendix No. 7 the development of this idea.
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4,3 - Pirst Investigation Regarding the Conical

Flows Past a Flat Dihedral. Applications

to the Fins and Control Surfaces.

We have already indicated in the course of this chapter that there
exist other conical flows than the flows with infinitesimal cone angles
or the flows flattened in one direction. In this last paragraph, we
shall give a few examples of flows past a flat dihedral. These flows
may be utilized either for the study of the effect of dihedral on a
lifting wing or for the study of the fins and control surfaces. We can
here not consider developing the complete theory of these flows. We
shall content ourselves with indicating a few examples.

4.3.1 - Effect of Dihedral on a Wing Completely
Bisecting the Mach Cone

Let us consider a A wing having dihedral; this wing is infinitely
flattened into two planes which intersect in Ox;. TFor simplification,

we shall assume that the plane Oxlx5 is a plane of symmetry, the wing

completely bisecting the Mach cone; upper and lower sides are therefore
"independents." This signifies that in the plane Z the region inside
of (CO> is divided into two domains (fig. 94). The wing portion inside

of the Mach cone (I’) is represented by two radii OD, OD' which form
with OX the angles 6p and = - 8g. The bounding generatrices of the

A have as images the points E and E' of the argument 67 and = - 87

on the circle. One will assume, in order to better establish the ideas,

T

The boundary conditions which permit determination of the unknown
functions U(Z), V(2), W(Z) in the region ODEE'D'O are:

(1) On the arc EE' u=v=w=0

(2) On the arc ED and on the segment OD w cos 85 - v sin 8

(3) On the arc E'D' and on the
segment OD' w cos 8g + v sin B

We shall treat here the elementary case; consequently, o will be
considered constant. The condition
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w cos 8 - v sin 60 = a

entails that on OD

or also

R (z " l)sin 6 + i(Z - l)cos ooz W| =0
= Z 7 az
T[ﬂﬁ]:o
=" az

The normal derivative of wu 1is zero along OD.

whence

One would have an analogous result on the segment OD'.

On the other hand, on ED

T2 o cos 90 -7 av sin eo =0
dz dz

which entails also

TR
- dZ

Consequently, u maintains a constant value on ED and E'D'.

Besides, it is easy to calculate this value owing to the formu-
las (III.46); one finds

"0 %3 sin(g; - 6)

In order to achieve the calculation of U(Z) it is then necessary
to carry out the conformal transformation
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T = 1-Tzm
where

b1

m = —————
x - 26p

The domain investigated is represented on a semicircle of the plane T
(compare fig. 95). The homologous point of E has as argument

_ ngel - 60)

T

Now the function U(T) can be written immediately on the strength
of the results of section 3.2.2.1

_ -7 (T + e-iwl)(l - Tei¢l)
R T R A B

and according to formula (III.53) one may write the value of the pressure
coefficient on the wing portion inside of (I')

sin @y
2

C _ )-'-a,

P s sin(el - eo) Are sin

- X cos2¢l

putting

X =B tan w

In order to link 65 to the angle wy defining the bounding gen-
eratrices of the cone, one will remark that

1

5] = + 0 with cOoSs T]O = ﬁ_t———
an (DO

17 0

It is easy to obtain the component of the normal forces on the upper
surface of each half wing; one will express this component by the dimen-
sionless coefficient
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c 1 c
= e e—— ad =
N 51 o p 4¥ X0 B tan wg

In order to calculate C one will use the plane T

CN=____1___fCP2_(£___TEldT
2B tan ay L (l + T2)2

2
- —= fRU()l'TQdT
P tan wo l + TE)

2
Bt:n BfU()l—T ar
7L 1+ ?)°

with L denoting the contour e'd'de in the plane 7 (fig. 95).

The calculation of this integral has already been performed in sec-
tion 3.2.2.2. Hence

Co = - oq, 1 2 sin @q
N B tan wy 28 cos Py Sin(el - Go>

2, cos(no + 90> sin @q

B cos ¢y sin(el - 90) (1v.78)

Remarks.

(1) It is obvious that the general case where a would be variable
over the span can be investigated without difficulty with the aid of

electric analogies.

(2) The treatment of the case where the cone representing a dihedral
is entirely inside the Mach cone is more difficult. The domain where the
functions U(Z), V(Z), W(Z) must be studied is annular, and in contrast
to what occurred in section 3.1, the conformal representation of such a
domain on a circular annulus does not seem to follow immediately.
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(3) It is possible to study the effect of dihedral on a rectangular
or on a sweptback wing by "composition" using the methods developed in

section 4.1.

4.3.2 - Fin at the Wing Tip

Let us consider, for instance, the edge AA' of a rectangular wing
of large aspect ratio; we shall assume the fin to be formed by a trian-

gular plate ABB' (fig. 96) which we shall suppose, to start with, as
lined up with the wind. We aim to calculate the effect of this fin on

the flow.

4,3.2.1 - It is almost evident that if the semi-infinite

lines AB, AB' are outside of the Mach cone of A,

the fin suppresses the end effect of AA'

Iet us consider, for instance, the case where the wing is reduced to

a lifting plate in the plane 7Z; the boundary conditions for the quad-

rant OAB read, in fact, as follows:

W =Wy, on OA and AB

v =0, on OB

They are the same that would be valid for a flow around a plate of infi-

nite span placed at a certain incidence with respect to the wind.
In contrast, the perturbation flow in the quadrant OA'B is iden-
tically zero. This result applies, by the way, likewise to the "thick-
We deal, therefore, not with a new mathematical problem,

ness effect."
but simply with a remark which can be utilized in certain technical

problems.

If now the fin is itself a lifting surface, that is, if v assumes
on the fin a constant value different from zero, the case is particularly
simple and one may conclude immediately that it is the one where the
bounding generatrices of the fin are symmetrical with respect to the
plane x70x,. In fact, if the fin were by itself, it would give rise to

a flow of such a type that the component w would be zero in the
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plane Oxyx,. Thus it suffices to add this flow to the one found in the
case where the fin is lined up with the wind>T.

4.3.2.2 - The case where the bounding generatrices

of the fin are inside of the Mach cone

gives rise to a new problem

If C and C' are the images of these generatrices in the plane 2
(fig. 97), we shall suppose, for instance, that C and C' are symmet-
trical with respect to 0, and shall study the effect of the fin on an
elementary symmetrical problem. The boundary conditions are:

W = Wwg on the upper edge of OA and on the arc AB
N
W = -wy on the lower edge of OA and on the arc AB'

v O on the two edges of OC and of OC'

For reasons of symmetry one also has w =0 on OA'.

We shall discuss the function 2 %% (the function F(Z) introduced

in section 3.1.1 is proportional to Z %%). The boundary conditions

inform us that Z %g is real on the contour ABA'OCOA. On the other

hand, according to the results obtained in chapter 3, B is a simple

pole for this function while C is a critical point of the order p + 1/2,
p bpeing an integer. Reassuming the arguments raised in section 3.1, one
sees that the simplest (in the sense of the principle of minimum singu-
larities) of the functions which satisfy these conditions is written

(1) 2
z &= - - & £ (1v.79)
z P (22 + 1) [(z2 +c2) (1 + cezz)]l/2

We denote by the index (1) the corresponding solution.

5TFor reasons of simplification, we have visualized the case where
the bounding generatrices of the cone were normal to the wind; it is easy
to treat in the same manner the case where this condition is not satisfied.
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on the arc AB.

Besides, u 1is zero on the arc A'B, and u = - —
Consequently, one has, if one takes as the initial determination for the

radical the positive one on the upper edge of OA, according to equa-

tion (III.46)
2wo(l _ 02)

k =
n

The integration of equation (IV.79) does not present any difficulty;
naturally, the integration constant must be chosen in such a manner that

One finds

=0 for Z = -1.
B0 (g) - 0 gl = 2200 - B) - oV s BI G+ o)
B (z2 +1) @+ c?
(Iv.80)
it for Z = 1.

with the logarithm having the value

The explicit calculation of W(1)(2) and V(1)(2) may be made by

One must, in fact, examine whether all boundary

Now

the elliptic functions
conditions are satisfactorily verified

av(l) . wo(l - 02) 1
az P KZE + ce)(l + c222i]1/2

Consequently, if one puts
Z = ic sn('r,ce)

the investigated region of the plane Z has as image in the plane
rectangle (compare section 3.1.1.8 and fig. 34) and one obtains

_av(®) % . 1W0(l _ ?)

av(1) _
az

ar

v(1) - -i-;f%(l - 2 (T - i %)

T

a
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The integration constant is chosen in such a manner that v = O on the
circle (Co). The solution U(l)(Z), V(l)(Z), W(l)(Z) thus does not

satisfy the boundary conditions posed; it corresponds to the case where
the fin itself is inclined toward the wind direction with the value of

v on the fin being equal to

L) ¥ (o - Pk (1v.81)

B 2

On the other hand, one finds for W(l)(Z)

2
aw(1) _ aw(1) az _ _ wO(l - ) 1 + c®sn°r
ar az. dr Bt 1 - cPep?r

W(l) is, therefore, expressed as a function of T by an elliptic inte-
gral of the third kind.

After having thus defined the solution U(l)(Z), V(l)(Z), W(l)(Z)
it is easy to obtain the one which is relative to the posed boundary

problem; it suffices to add a solution U(e)(Z), V(E)(Z), W(E)(Z) 80
that

(1) w@) - v(2) - (@) - 0, on (Co)

(2) w(2) =0, on OA and OA’

(3) v(2) = -v(l), on the two edges of the cut CC'

This flow is, except for the notations, the one which has been
studied in section 3.1.1.7. In particular, the value of the func-

tion U(2)(z) 1is written

u(@)(z) =2 c? v(1) 1 - 78 (1v.82)
B o241 E<1 - C§> [:(ce + 22) (1 + z2c9) 1/2
1+ c

One obtains thus the following general result: if one must on the
fin have v = v, the value of the function U(z) is given by the formula
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b
& u(z) = 20 10g 12 - 221 - c?) - 2VKZE + @) (1 + 272) +
{ prt (1+22)(1 + D
)E; 202 ) —Vo + 2—‘:%)-(1 - CE)K' (l - Z2)
: B(1 + 02)E<%“:“2—> g \/(Z2 + 02)<l + c2Z2)
+ c°
(1v.83)

One will see that in the case where v5—»O and c2——>l, one finds,

at the limit, the result foreseen in the case where the fin bisects the
Mach cone (4.3.2.1); and that, if c¢c—>0, one falls back on the solution

of section 3.2.2.1 (equation (III.5T)).
sure coefficient on the wing (Z real and positive), and finds

_ QEE+ Are cos J(l - @) (1 - 72):| +

Cpn =
P B |2

One may then calculate the pres-

2 W 2
— X _lovg - 21 -cE)KZI l-x
)‘:O Bt R - 2) + 2

eE(fL - 2

putting
x:ﬁ.— 7:2—0
1+ p° 1+ c®

4.3.3 - Crossed Wings
To terminate these few remarks regarding the calculation of the
effects of dihedral, we shall give a few indications regarding the case

of crossed wings.

Let us consider a cone flattened in two directions of the
The function w on the two faces of the tri-

planes OxpXp, Oxlx3.
angle OAA' and the function v on the two faces of the triangle OBB'
are known.

Let us suppose that OB and OB' are symmetrical with respect to
0xy%x5, and that OA and OA' are symmetrical with respect to Oxlx3;

under these conditions the flow around the crossed wing is obtained in a
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particularly simple manner. It suffices to superimpose the flow which
is infinitely flattened into the plane Oxlx3 and realizes the desired

values for v, and the flow which is infinitely flattened into the
plene Ox)x, and realizes the desired values for w. In fact, due to

the symmetry, the first flow gives a value of zero for w in the
plane Oxy1xp, and the second a value of zero for v in the plane Oxlx5.

The case where the crossed wing does not admit two planes of sym-
metry cannot be treated as simply in the general case. Particularly,
the case where the bounding generatrices are all entirely inside the
Mach cone leads doubtlessly to analytical solutions which can be explic-
itly expressed only with difficulty, even in the elementary case. How-
ever, as in all these problems concerning the effect of dihedral, the
solution is facilitated by the utilization of conformal representations.
Although they are hard to obtain in explicit analytical form, they may
be determined accurately by judiclous utilization of the general method
of electric analogies.
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APPENDIX

No. 1 - Theorem of Existence and Singularities
of the Solution for a Flow Infinitely
Flattened in One Direction

1. Generalities.- The source’method which should be called more
exactly the 'method of the fundamental solution of Hadamard" permits the
general investigation of the flows about obstacles which are infinitely
flattened in one direction. Several authors (compare refs. 1, 2, 3,
and 4 of the references for the appendix) have independently investigated
this problem. We ourselves have studied this question in collaboration
with M. R. Bader. Since the corresponding report (ref. 5) has not been
officially published, we shall give here the results which seem to us
original with regard to the investigations quoted. With the same nota-
tions as in the text, the problem may be formulated in the following
manner (see fig. 1):

Find a solution w(xl,xe,XB) satisfying the equation

2p  Po  Fy

a®  dmp?  AxsP

=0

L(e) =B

and the boundary conditions:
(1) at infinity upstream: ¢ = 0, grad ¢ = O;

(2) on (8), projection on Ox3x, of the obstacle:

%gg = k+(xl,x2) for X3z = +0
o -
Sgg =k (xl,xe) for Xz = -0

kt and k- are known functions which satisfy the conditions of regu-
larity (II) relative to 8¢/Bx5 which will be specified below.

*Figures for this appendix are found on pp. 332-333.
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In order to pose the problem correctly, one must furthermore state
exactly the hypothesis of regularity which one imposes on the solution;
we shall denote by (R) the portion of Oxyx, which corresponds to the

wake of the flattened body on (8S).

(I) ¢ is continuous, except for, eventually, across the
plane x; =0 on (8) and (R).

(II) The first and second derivatives of ¢ exist and are generally
continuous outside of (S); a possible exception may occur across certain
characteristic surfaces where the derivatives may have either disconti-
nuities of the first kind at a regular point or infinities at an excep-
tional point. Nevertheless, they may have infinities on (S) in order
to satisfy the hypothesis of linearization; @ Bx5 can become infinite

only on parts of the boundary of (8S) and only when one approaches it
by remaining outside of (8).

Furthermore, we shall assume BQ/BXB and Bq/axl to be continuous
if one traverses Ox;X» at a point outside of (8). This hypothesis
has an immediate physical significance for B?/3x5; the same holds true
for Bq/axl if one recalls that this quantity is proportional to the
pressure. In other words, only Bq/axe can have a discontinuity of the
first kind across Oxyxp.

Finally, ¢ can be divided (as in chapter III) into its odd and
even parts with respect to X3 . If ¢ 1is odd in X3 (symmetrical

problem), 5@/8X5 0 outside of (S). If ¢ is even in X3 (1Lifting
problem), aq/axl =0 in Oxyx, outside of (8) as it results from
the hypothesis (II).

2. Fundamental formula.- We shall utilize the generalized formula

of Green
j]:/:r EJL(V) - vL(uZld'r = - ffZE g% - v g_ﬂdd

E is the surface having an element do which bounds the volume V

having an element drt; the derivatives d/dv are the derivatives in the
transverse direction. Thus one has, if is defined by

F(xl,xe,x5) = 0 with F(xl,xe,x5) > 0 outside of V
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_4 _ B2 OF o _JF O _OF
dv Oxy Bxl Oxp OXp Bx5 Bx3

Finally, utilizing the conception of the "finite part" of an integral
originated by Hadamard, one may apply Green's formula to functions u
and v which cause the employed integrals to become infinite. One
then writes

JI/; EzL(v)-vL(uﬂdT=- ffZE%_v%ﬂdc

Let us consider at a point P(gl,§2,§3) (§5 > 0 for instance), the
Mach forecone TI' and let us intersect it by the plane x; = -A where
A 1is positive and very large, and by the plane Xz = 0. We determine

thus a volume V in the region X3 > 0, bounded by a surface E .
Admitting the existence of @, we apply Green's formula to the pair

U= P (x,%p,%3)

1
JEr - )% - 82 [l - %)+ (5 - )7

H 1is the fundamental solution, in the sense of Hadamard, for the
wave equation.

We cannot discuss here all the details and all Justifications but
we shall note the principal stages of the demonstration.

(a) It is shown that the generalized formula of Green can be applied
effectively to the pair ¢, H, even if the derivatives of @ present
discontinuities of the first kind, owing to (II) which informs us that
these discontinuities occur on characteristic surfaces.

(b) For the part of EE: situated on x7 = -A, the double integral
becomes zero due to the boundary conditions.

(¢) On the cone I' the double integral must be taken at its finite

part. Let us introduce the cone TI'. with the equation
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02 |(xe - 82)2 % (x5 - 85)%] = (1 - Py - 8)2

and the plane Py

X} =& -8 (8 > 0)

Since € and % are small, one will calculate the double integral on
the surface adjoining E , formed on one hand by I and on the other

by the circle C_g, with the section of Fe made by the plane Pg. One
can easily show that the contribution due to I'c has a finite part of
zero, and that the one due to C_g 1is -2np(P). Consequently, one
obtains, denoting by h the section of (I') by Xz = 0, the relation

OH _ 1 9P
() = L{]q ® 5x3 do 21 k[]; ax3 do

(d) In order to eliminate @ in the second term, one may apply the
image method utilized by V. Volterra in an analogous problem. Let P'
be the symmetric point of P with regard to Oxyxp,; let us apply Green's

formula to the volume V situated in X3 > 0, bounded by the
planes xq = -A, Xz = 0, and the Mach forecone of P' by putting

u = ¢(xl’X2’x3) v =H = H(P'")

One thus obtains

f H_ g5 - L 9P 4
T 2n 8x3 On h Bx5

and since for X3 = 0]
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one has

—
ff(p.bldg:-ff}[?.c’;dg
h BXB h 6x5

Combining this result with the preceding one, one obtains the desired
fundamental formula

=—
Q(P):-lffﬂ?dc:iff@gidg
hid h X5 T h X3

3. The theorem of existence for the symmetrical problem.- In a
symmetrical problem Op/Ox3z is known on every face of x3 = Q; conse-

quently ¢ may be calculated in the entire space. The existence of
the solution will be established if one verifies that this function ¢
satisfies L(®) = 0, the boundary conditions, and the conditions of

regularity.

(a) L(¢) = O, for the functions k(xj,xp) satisfying the
hypothesis of regularitys; one may calculate the derivatives of ¢ by
deriving under the sum sign with respect to the coordinates of P.

Since only H depends on these coordinates and H satisfies L(H) = O,
the result follows from it as Hadamard has shown in a very general
manner.

(b) In order to verify the boundary conditions, one must show that

o) 1 OH_ o9
lim ——(E1,E0,E%) = lim -—f SH_ % a5 = kt(tq,¢
r 0 agi( 1582,%3) £y —s0 % JJn %3 5 (81-%2)
(§5 > 0)

This verification is easy if one puts

N BEx
17 (@ -w)sin 6

X =t Xp = £p - k3 cot @

in the integral and then going to the indicated limit.

(c) Verification of the conditions of regularity leads to a careful
study of the behavior of ¢ and its derivatives. We can give here only
the conclusions of this study.
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A. In the plane Oxy1xp, let P' and P~ be two points lined up
with P so that

PP = PP = ¢

(1) If there are only isolated points of discontinuity of aq/axj
on the Mach lines ahead of P, and if B?/Bxa is continuous at P

?(P*) = o(P7) + O(e)

that is, @ 1is continuous at P, of the order €. An analogous result
is valid for the first derivatives 8¢/Bxl, BQ/BXE.

(2) If there is only a finite number of points of discontinuity on
the Mach lines shead of P and if P 1is a point of a supersonic line
(compare chapter IV) of discontinuity for BQ/BXB, ¢ 1is continuocus of

the order e, but op/dx; and dP/d have discontinuities of the
1 xp

first kind. 1In particular, if the tangent to the line of discontinuity
at P forms with Ox; the angle w, the discontinuities of BQ/BXl

and of 5?/Bx5 are comnected by the well-known relation

A(é@ ) _ tan P >
Y dx
1 Jthanam -1 3

(3) If there is only a finite number of points of discontinuity on
the Mach lines ahead of P, and if P is a point of a subsonic line of
discontinuity, the first derivatives of @ become infinite as 1log €
when one tends toward P.

(4) If there is a discontinuity of 8?/8x5 on an entire segment
of one of the Mach lines ahead of P, the first derivatives of ¢ become

there infinite as e'l/e.

B. Outside of the plane Ox;x, one has the following results:

(1) If the boundary of h is not at any point tangent to a line
of discontinuity of Bq/axj, and does not contain any finite part of

such a line, the first derivatives of @ are continuous and of the
order €.
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(2) If the boundary of h is at certain points tangent to a line
of discontinuity of BQ/BXB without containing any finite part of

such a line, P 1is situated on the characteristic surface which has
this line of discontinuity as directrix, and the first derivatives of
® admit discontinuities of the first kind at P when traversing this
surface.

(3) If in exceptional cases the boundary of h contains a part of
a line of discontinuity of Bw/BX3, the first derivatives of ¢ become

infinite as 6‘1/2; besides, such a point is necessarily isolated.

A1l these results taken together show that the conditions of regu-
larity are satisfied which proves the existence of the solution found

in this manner.

4. The theorem of existence for the 1lifting problem.- We shall
insist less on the calculation of the solution, which one can find in
the published memoranda quoted before, particularly in reference 4, than
on the study of its singularities. However, in order to make this
investigation, we must indicate briefly the procedure of the calcula-
tion; we shall do so for the simplest case, the one where the edges of
the wing are independent. (Compare fig. 2.)

The fundamental formula permits the calculation of the potential
when one knows 8?/8x3 on the entire plane 0x;X,.

It is clear that this quantity is zero upstream from the line AMM,,
with MM; Dbeing the characteristic tangent to the leading edge of the

wing.

In order to calculate this quantity in the regions where it remains
provisionally unknown, it is advisable to make the change of variable

1l
>/

X - Bxp
k(x),%5) = K(A,u)

|
=

X + Bx2 =

If p = ul(x) and p = ue(k) are the equations of the arcs AM
and MNQ, one has at a point Mg, Mg oOf the region M;MNN; (since in

this region @ is zero) the equation
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L% mo(A)
, K
| I(hosko) = f Po - 7 == —(:—,E)—d% '
| . n VO np(d) VO
du 0

!
fko _a f“o ® _aw _
Vo - A %3 \ho - b
w YO Ho (N) ©

this equation entails the equality

HE(-)\) KO\:IJ-) dp = 0O

i
© % _a _K(\,p)
ox
> -n -
bo (M) o by Vo F

which determines 8¢/5x5(KO,uO> by the inversion of an equation of

One finds (ref. L)

Abel.
H2(Ao)
K(hosk)Ha(Po) - H'

P _ 1
Bo-u!

Ox=
5 o~ Ha(Mo)

11 (Ro)

thus one knows B?/BXB in the region M;MNN,.
is not zero (for instance on the wake),

At a point where w(%o,uo)

one has
'2ﬂ5¢(Ko;Uo) = I(%o;uo)

which gives, after a double Abel inversion
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bo ko(Ao)
39 .1 _ Gy K(rgsu)an
Bx5(x2’“2> x o TR T
Ho(A2) 1 (A2)
Mo Ao
2B dio d ? A

h14 6u2 - 8%2 A - A
“2(%2) \Fz Ho A J 2 0

This equation contains two unknown functions, and in general it will be
impossible to determine them both without introducing a supplementary
hypothesis. But if one supposes that:

9 ig contimuous in Oxy1xp when traversing the subsonic trailing edge,

ox

)
it will be seen that it is easy to calculate first @ on the wake, and
then 8@/53{5 in Oxyx,. The preceding equation is written

ko (A2)
X __1 M+
3x3 X J“z - ua(Ap) w1 (%) J“2 No) -

Ho ko (A2)

K Aoyl dp +
I e
2

?\2) -€
1 f f (7‘2’“) ;“2 _
(%) 2 (o) (o =072

23 "2 LoV (Moo eﬂ
P dng -
J“z - Hp(A2) Ao - 7\o
Hg AE [
26 dbo 3 "ng (oto) (Mosko)

dAho

20) P2 - 0 X0y V2 - 70
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If one makes Hp tTend tuward “2(K2) with € bpeing a small quantity,
one sees that, according to the previous hypothesis, the second term of

the second member tends toward B¢/Bx5(k2,u2) whereas the third tends
Let us moreover make the provisional hypothesis that the

’ toward zero. 1
last term tends toward zero (this hypothesis will have to be verified

later on), and we obtain

However, since @ maintains in the wake a constant value on the lines
parallel to Oxy, it suffices to know, for instance, the values of the

potential on the straight line QI (fig. 2) in order to know them every-
In accordance with this remark

where.
N o1 (hgig) ha(Pp)
f Cp\liko’—“i Do = - 25 <Cpok) g
- Apt
-)\I 0 U-l(?\Pv) ue( P)
or

A
° KOpd)

= - _l_.
?(Nosug 2B m»/:l o) h20p) -
1\P

if one defines Ay, Dby

A - 7\Pt = “‘Q - l.lg(?\Pl)

We note that the circulation along the subsonic trailing edge is thus

calculated.

It remains to be verified that the provisional hypothesis adopted
in the course of the calculation is well founded which can be accomplished
without difficulties. One sees thus how the solution of the lifting
problem can be determined.
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In order to establish that the calculated solution completely ful-
fills the problem that is the theorem of existence, one proceeds as in
the symmetrical case; thus the whole matter finally amounts to an inves-
tigation of the singularities of this solution; this investigation per-
mits a verification a posteriori of the conditions of regularity. In
order to make this investigation, it is necessary to study first of all
the behavior of B?/BXB in the plane OxyX,. As before, we shall indi-

cate the results without demonstration.

(a) Study of 8@/8x5 in Oxyxp.- First, one sees immediately that

BQ/BXB increases indefinitely as 6'1/2 when one tends toward the sub-

sonic leading edge MN, remaining outside of (S). On the other hand,
according to hypothesis, this gquantity is continuous on the subsonic
trailing edge NQ. We shall now specify its behavior along the charac-
teristic NN;; a rather simple calculation which we cannot reproduce

here, in order to avoid postponement of publication, permits to show that:

Along the line A = Ay, H > py, 8?/8x5 undergoes a discontinuity
of the first kind equal to

Mo (A
T

o (M) - M

The manner in which 5?/8x5 1s calculated shows then readily that
aq/ax3 has no other discontinuities in the plane O0x;x,, outside of

(8), of course.

(b) Study of the solution in O0x1x%o.~- What has been said for the
symmetrical problem remains valid by means of the following modifica-
tion: First of all, ag/axl and BQ/BXE become infinite like e-1/2

along the subsonic leading edge. On the other hand, a very important
fact, the derivatives Bg/axl and BQ/BXE undergo discontinuities of

the first kind along the characteristics issuing from the boundary points
between subsonic leading edge and subsonic trailing edge. [?or Bw/axl,

however, such a discontinuity can occur only on (S)J

(c) Study in space.- The only really new fact to be pointed out is
that across the Mach cones behind the boundary points between subsonic
leading and trailing edges, the first derivatives undergo a discontinuity
of the first kind.
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5. Final remarks.-

(a) We have adhered to demonstrating the existence of the solution,
but the employed procedure of demonstration shows at the same time that
the solution is unique. Consequently, every solution which corresponds
to the hypothesis found by other methods (particularly by the method of
conical and homogeneous flows) represents the unique solution to the
problem posed.

(b) One will also note that the supplementary hypothesis introduced
along the subsonic trailing edge in the case of a lifting problem may
also be expressed by saying that the pressure remasins continuous along
this line. This is an immediate consequence of the investigation of the
behavior of the solution.

(c) We have not attempted to investigate here the most general type
of surface (S). In general, the method can be applied by means of a
few precautions (compare ref. 4 or ref. 5). Nevertheless, there exist
cases where the application of this method actually fails, for instance,
the case where the wing does not possess a supersonic leading edge, or
also for certain dispositions of the trailing edge. Figure 3 shows such
examples; 1f one traces a few Mach lines, one will understand immediately
the reason for this failure.

(d4) One of the advantages of the method just described is the fact
that it may be effectively applied to very general problems. Neverthe-
less, it does, in our opinion, not minimize the advantages of the method
of conical flows, since in many particular problems arising in aeronau-
tics, the method of conical flows (and the method of homogeneous flows)
lead in a simpler manner to the desired result.

(e) The method of the fundamental solution has the great merit of
permitting the study of the general conditions of the flow, particularly
the study of certain pressure discontinuities which one encounters on
the surface of the wing in certain lifting problems.

No. 2 - On Homogeneous Flows

We developed the theory of homogeneous flows58 and gave a few
applications in a recent article (ref. 7). We shall give here a few
supplements to the general study made in section 1.5. If one puts

58Simultaneously, this problem has formed the subject of an article
by M. Poritzky (ref. 6). However, this author does not seem to us to
have gone as far as we have in the investigation of the homogeneous
flows.
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ofn) "9

®(p,q,r) = (p+q+r=n)

x:L Bx qax

the @E;)q r) depend in a homogeneous flow of the order n only on
P-4
X and 6. Inside of the Mach cone (I') these quantities may be con-

sidered as the real parts of analytic functions of the variable Z
defined except for an additive purely imaginary constant which we shall
denote

(1)
(qu)r) (Z)

A problem of homogeneous flows is treated for the nth derivatives.
These nth derivatives are connected by the relations of compatibility

which may be expressed in the following manner:

Al]l the expressions
30 (D)

(_ _l_)P+q 27 \P( 2iz ) 4 (n-p-q,p,9)
= 72 + 1) \z2 - 1, az

are identical whatever the integers p and q may be which satisfy the
inequalities

OLKp+g«n

In order to express the boundary conditions with the nth derivatives,
and to enter the nth derivatives into the calculation of the potential
or of the pressure (C = -u), one will utilize a generalization of

b
Euler's identity

(1) (1) (1) "
? = 2t [%(0,0) * *¥(0,1,0) * x5¢(0,0,lﬂ

a formula in which one must use the following convention concerning the

o()
W Pl Y@ T L plerar)
'Ep(l,0,0;, Ep(o,l,O):l [}(0,0,l;l ) CP(P:Q.:I')
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One will find in the quoted article an application of these general
principles to the case of the flows flattened in one direction. The
methods used in chapter III can be generalized without any difficulties;
also, one may utilize in this investigation the analogy of the electro-
lytic tank. A superposition of homogeneous flows permits, in a very

simple manner, the investigation59 of a rather large group of A wings:
"the A wings with affine sections."

No. 3 - On the Methods Utilized in Chapter III

The exposition of certain problems of chapter III could be somewhat
simplified not only by omitting certain intermediary calculations of
wholly elementary character which we have mentioned to facilitate the

reading, but also by employing slightly different methods6o. First of
all, as we have remarked in the text, certain simplifications appear if
one places oneself in the plane z. Thus the symmetrical problem may
be solved by the same formulas whatever the ﬁosition of the obstacle
may be with respect to the Mach cone. Nevertheless one has to be very
careful regarding the determinations of the solution when one passes
from one case to another since the solution should be characterized by
continuity. We have elected to utilize here the plane Z because the
relations of compatability in 2Z do not cause the appearance of multi-
form functions and the theoretical difficulties are, consequently, of
distinctly lesser importance even though the calculations may sometimes
be a little lengthier. Particularly, the demonstration of the theorems
of sections %.1.1.3 and 3.1.1.4 is markedly simpler if one utilizes the

plane Z. Summarizing one may say that the plane 2Z is simpler theo-

retically while the plane 2z 1is simpler for t’ . calculat10ns6l.

Mr. Ward has stated the solution of certain elementary problems
relative to obstacles flattened in one direction using a very elegant
method (ref. 8). His study is based on a solution of the equation of
cylindrical waves given by Whittaker. With our notations

59One will alfo refer to the article of"Mr. Fenain which will
appear shortly in ILa Recherche Aéronautique 3 in it one will find a
complete study of a certain number of these particulars.

60In conferences at the 'Centre d'Etudes supérienres de mécainque
(1949) we have made an exposition regarding conical flows flattened in
one direction which is very different in form from the one given in
this report.

61The same may hold true for the electric analogies (compare on
this subject the article of Mr. Fenain quoted before).
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P = L/1 (xl - Bxp ch u + ifxs sh u)f(u)du
C

is the potential of a conical flow provided that the contour C Jjoins
two points v; and uy, so that u; and u, are roots of the equation

Xy, - Bxo ch u + in5 shu=20

In contrast, the function f(u) is arbitrary.

This very refined expression for ¢ furnishes the relations of
compatibility and permits solution of the particular problems. The
homogeneous flows are given by the solutions of the wave equation of
the form

L/\ (xl - Bxp ch u + ifxs sh ugnf(u)du
C

In the case of homogeneous problems of the order n, it seems neverthe-
less difficult to state the boundary problem clearly and to solve it by
this method without falling back on methods strictly equivalent to those

reemployed.

No. 4 - On the Complementary Hypothesis at the
Subsonic Trailing Edge

The question posed in section 3.3, which we left pending, seems to
admit a practically definitive answer; one must maintain the flows of
the type II which give rise to a discontinuity of the potential along
the wake of the wing. But as we have said before, this results from a
hypothesis clearly formulated in the appendix No. 1 which may be stated
as follows:

The gradient of the potential is continuous across a subsonic
trailing edge. All the remarks made in section 3.3 concerning the con-
sequences of this hypothesis remain valid.

The most decisive argument in favor of this hypothesis is that it
appears to be the simplest of all one may set up that insures the con-

tinuity of @.
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In the case of conical flows infinitely flattened in one direction,
we have seen that it entails a line of singularities following Ox;

along which w 1is infinite when the body has a trailing edge. Such an
occasion does not arise in the general case (compare appendix No. 1).
A1l methods of chapter III can be applied to the calculation of the
conical flows for which this complementary hypothesis must be taken

into account. In particular, we have indicated elsewhere62 how one must
operate in this case for the analogical calculation of the solution.

No. 5 - Remark on Sweptback Wings

With Subsonic Leading Edge65

The formula (IV.37) may be written also

2 - g 1 1
c, = - }y cos 7(1 + 2 sin“y - M“cos 7)f a(x)dxf a,(g)loglx - gldg
T s1in 7(1 - M2c0527)5/2 0 0

This formula lends itself well to an investigation of the optimum. We
shall search, in fact, for the profile which, in delimiting a given
area, provides a minimum drag; putting

X
e(x)=f a(t)dt
0

one is led to seek the minimum absolute value of the integral

1 1
qu de(x)kjw de(g)loglx - g|
0 0

6200mmunication to the Tth Congrés International de Mécanique
appliquée (1948).
3This remark has been made by the author in the course of his

communication to the Tth Congrés International de Mécanique appliquée
(1948), quoted above.
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It is easily seen, and the fTact is well-known to aerodynamists, that the
solution of the function e(x) of this problem has the form

e(x) = k\[]_. - x°

that 1s, that the desired profile is an ellipse.

The train of thought which leads to (IV.37) cannot be applied to
the case where the profile has a tangent normal to the symmetry axis;
but according to a remark already made more than once, one may neverthe-
less assume that the obtained result does not lack connection with

reality.

This leads to the idea that, for a wing with subsonic leading edge,
it may be practical to utilize profiles with rounded leading edges.

One will note that this is not the case in supersonic regime. If
one takes up this problem for a wing of infinite span normal to the wind,
one finds readily that the optimum profile is formed by two symmetrical
parabolic arcs.

No. 6 - Remarks on Lifting Sweptback Wings With
Sonic and Subsonic Leading Edges

(Compare Section 4.1.2.3.2)

The formula (IV.69) may also be written by putting

ﬂox-g-z(ﬂo’fyx)]_ £2 2(ng + ¥ 1

nox + ¥¥E 1+ t2 x 1+ t°

in the form

- bi - X
Cp x ~ y%
ﬂBJx(x - 2yx)

tox'f”x'(’]o”’yx)(l‘“te) at

2(n + ¥) J, 1+ t2 b2 - 42
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One could make the calculation of the C; of the plate studied in sec-

tion 4.1.2.3.2 in a different manner by obtaining first the preceding
integral, and integrating the pressures along the plate. Thus one finds
that the Cp has in the region AA'A" of figure 88 the simple value

R

Along AA" there exists therefore a pressure discontinuity equal to

21  x - 2y¥

AC, = =
P Jx(x - 2yx)

Besides, this discontinuity may be calculated immediately from the

formula giving the Cp in making to tend toward zero since it is
clear that the integral tends toward a finite value when tg tends

toward zero.

If the leading edge is subsonic, the same theory is applicable. In

this case, the CP cannot be expressed with the aid of elementary func-
tions6u. However, the pressure discontinuity along the Mach line issuing

from A may be calculated directly. One will compare this important
phenomenon with the general investigation made at the end of the appen-
dix 1 which anticipates the existence of such discontinuities on the
Mach cones which have as vertices the ends of the subsonic leading edges.

No. 7 - Calculation of Fuselage Shaped Bodies
With Infinitesimal Opening Angle

At the end of section 4.2.4 we indicated that by composition of
conical flows one could give a complete study of any arbitrary spindle-
shaped bodies with infinitesimal cone angle. In a communication to the
7th Congrés International de Mécanique appliquée (September 1948),

Mr. Ward described an elegant method based on a solution of the wave
equation with the aid of symbolic calculation; this report has been pub-
lished (ref. 9). We shall show here the accuracy of our anticipation by

6400mpare an investigation of this problem with numgrical applica-
tions in an article to appear shortly in "La Recherche Aeronautique.”
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establishing through the method of composition of conical flows the
fundamental formulas given by Mr. Ward.

The notations which are not defined here are the same as those of
chapter II. In this chapter we have shown that in the neighborhood of
the obstacle, the complex velocity U(Z) had the form

u(z) =Aologz+z‘;_g
1

with the A, being numerical coefficients depending on the shape of
the cone. Let us put
i6

Z =Tre

as in the neighborhood of the obstacle

©
e
o™
ek
N9
ne
P
[

and

o 1, N
U(z) = AO<lOg z + log 2£.> + z Ap zl

Xl 1 2

with the A,' Dbeing new coefficients. Hence one deduces that the
potential of perturbation has the form

@ = B [Ko(2)]

with
X
l 0
A nxln+l
= A log z + 10g £ at Py
Kolz) = hofxy log = . €2t " n

with the A," denoting new numerical coefficients.
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More generally, the potential of the conical flow with infinitesimal
cone angle, the vertex of which is situated in x3 =0, r = 0, can be

expressed (in the neighborhood of the obstacle)
¢ = Bo[Kc(z)]
with

Ks(z) = Ag(o) (xl - o)log z + L/\

0

*1-9 '(U)(xl _ c)n+l

00 T
B An
log — dt| +
gl - 5 HOY

A superposition of conical flows the vertices of which are situated on

Ox; causes a flow which in the neighborhood of the obstacle depends on
the potential

= 1

P Bo[i(zﬂ (1)

where f(z) has the form

o

f(z) = ag log z + bg + :Z: —% (2)
z
1

a being defined by the integrals

the coefficients agy, b, n

ag = L 1 (Xl - O')dAo(O')

xl xl-d
by = f d.AO(c)f log £ at
0 0

= xl - n+l n(
“n 0 (x1 - o)™ day" (o)
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One will remark immediately that

B Xy Xl—d
bo = 8 log 5 - . dAg(o) . log t dt

pYe o
= a log g— - ﬁ * log(xl - o)dUJ; dAg(t)

or

B X1 da,
bo = ao lOg -2- - o a?- log(xl - G) do (3)

&
Reciprocally, it is clear that under very broad conditions a func-
tion f(z) 1like (2) (in which the coefficients &gy, by, a, are func-

tions of x;, &g, and by comnected by (3)) determines by (1) the

potential of a flow with Infinitesimal cone angle in the neighborhood
of the axis Oxl. This constitutes the fundamental result of Mr. Ward.

Thus we are in a position to construct such flows. The only theo-
retical question to be examined is the following: Can one determine the
coefficients an(xl) so that ¢ represents the potential of a flow

around a given obstacle. We shall see that, visualizing the boundary
conditions, we may answer this question in the affirmative.

Let us designate by
r = F‘@,xl)

the equation defining the obstacle by Cxl the section of the

abscissa xy and by Qxl the function of the two variables r and 0

obtained by considering x; in ¢ as parameter.

The normal derivative of ¢xl along Cxl is given by

3 _ 1
dwxl dr ~_F 00 09

@ R L (F/o0)2
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Now the boundary conditions along Cxl are written, taking into

account the usual approximations,

0p 1 OF o9 oF

F &t _ X _-p=_
Br F 89 88 Bxl
hence the relation
F oF
dq)xl - le
dn

VF2 + (3F/30)2

Thus one has, denoting by s and wxl, respectively, the arc of Cxl

and the conjugate function of mxl

d
Y o ae
ds ox; ds

The coefficient ag 1s given by

S(x;) denotes the area delimited by Cxl; the coefficients a, are

then obtained by solving an exterior Dirichlet problem for the con-
tour Cxl. Thus the flow around any obstacle with infinitesimal opening

angle can be completely determined.

Mr. Ward (ref. 9) has given in his memorandum splendid applications
of these results. In particular, he has shown, taking for expressing
the pressure the formula (I.1l), that the total lift is uniquely expressed
as a function of the coefficient a; of the terminal section of the

obstacle and that the drag depended only on the coefficients a, of
this section.
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